Li Bowen, Wang Zhaowu, Zhao Shanguang, Hu Changlong, Li Liang, Liu Meiling, Zhu Jinglin, Zhou Ting, Zhang Guobin, Jiang Jun, Zou Chongwen
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, P. R. China.
Small Methods. 2022 Dec;6(12):e2200931. doi: 10.1002/smtd.202200931. Epub 2022 Oct 26.
The utilization of clean hydrogen energy is becoming more feasible for the sustainable development of this society. Considering the safety issues in the hydrogen production, storage, and utilization, a sensitive hydrogen sensor for reliable detection is essential and highly important. Though various gas sensor devices are developed based on tin oxide, tungsten trioxide, or other oxides, the relatively high working temperature, unsatisfactory response time, and detection limitation still affect the extensive applications. In the current study, an amorphous tungsten trioxide (a-WO ) layer is deposited on a phase-change vanadium dioxide film to fabricate a phase transition controlled Pd/a-WO /VO hydrogen sensor for hydrogen detection. Results show that both the response time and sensitivity of the hydrogen sensor are improved greatly if increasing the working temperature over the transition temperature of VO . Theoretical calculations also reveal that the charge transfer at VO /a-WO interface becomes more pronounced once the VO layer transforms to the metal state, which will affect the migration barrier of H atoms in a-WO layer and thus improve the sensor performance. The current study not only realizes a hydrogen sensor with ultrahigh performance based on VO layer, but also provides some clues for designing other gas sensors with phase-change material.
清洁氢能的利用对于社会的可持续发展正变得越来越可行。考虑到制氢、储氢和用氢过程中的安全问题,用于可靠检测的灵敏氢传感器至关重要。尽管基于氧化锡、三氧化钨或其他氧化物开发了各种气体传感器设备,但相对较高的工作温度、不理想的响应时间和检测局限性仍然影响其广泛应用。在当前研究中,在相变二氧化钒薄膜上沉积非晶态三氧化钨(a-WO₃)层,以制造用于氢气检测的相变控制型Pd/a-WO₃/VO₂氢传感器。结果表明,如果工作温度高于VO₂的转变温度,氢传感器的响应时间和灵敏度都会大大提高。理论计算还表明,一旦VO₂层转变为金属态,VO₂/a-WO₃界面处的电荷转移会变得更加明显,这将影响H原子在a-WO₃层中的迁移势垒,从而提高传感器性能。当前研究不仅基于VO₂层实现了具有超高性能的氢传感器,还为设计其他具有相变材料的气体传感器提供了一些线索。