Suppr超能文献

增强现场荧光测量以提高原位污染物检测。

Augmentation of field fluorescence measures for improved in situ contaminant detection.

机构信息

School of Engineering, The University of British Columbia Okanagan, 1137 Alumni Ave., Kelowna, BC, Canada, V1V 1V7.

出版信息

Environ Monit Assess. 2022 Oct 26;195(1):34. doi: 10.1007/s10661-022-10652-1.

Abstract

This research proposes a new method that fuses data from the field and lab-based optical measures coupled with machine learning algorithms to quantify the concentrations of toxic contaminants found in fuels and oil sands process-affected water. Selected pairs of excitation/emission intensities at key wavelengths are inputs to an augmentation neural network (NN), trained using lab-based measurements, that generates synthetic high-resolution spectra. Then, an image processing NN is used to estimate the contaminant concentrations from the spectra generated from a few key wavelengths. The presented approach is tested using naphthenic acids, phenol, fluoranthene and pyrene spiked into natural waters. The spills or loss of containment of these contaminants represent a significant risk to the environment and public health, requiring accurate and rapid detection methods to protect the surrounding aquatic environment. Results were compared with models based on only the corresponding peak intensities of each contaminant and with an image processing NN using the original spectra. Naphthenic acids, fluoranthene and pyrene were easy to detect by all methods; however, performance for more challenging signals to identify, such as phenol, was optimized by the proposed method (peak picking with mean absolute error (MAE) of 30.48 µg/L, generated excitation-emission matrix with MAE of 8.30 µg/L). Results suggested that data fusion and machine learning techniques can improve the detection of contaminants in the aquatic environment at environmentally relevant concentrations.

摘要

本研究提出了一种新方法,该方法融合了现场和基于实验室的光学测量数据以及机器学习算法,以量化燃料和油砂加工影响水中有毒污染物的浓度。在关键波长处选择的激发/发射强度对个别的增强神经网络(NN)进行输入,该网络使用基于实验室的测量值进行训练,生成合成高分辨率光谱。然后,使用图像处理 NN 从少数几个关键波长生成的光谱中估计污染物浓度。该方法使用天然水中的环烷酸、苯酚、荧蒽和芘进行了测试。这些污染物的溢出或泄漏对环境和公共健康构成了重大风险,需要准确快速的检测方法来保护周围的水生环境。结果与仅基于每个污染物相应峰值强度的模型以及使用原始光谱的图像处理 NN 进行了比较。所有方法都很容易检测到环烷酸、荧蒽和芘;然而,通过所提出的方法可以优化对更具挑战性的信号(如苯酚)的识别性能(峰提取的均方误差(MAE)为 30.48μg/L,生成激发-发射矩阵的 MAE 为 8.30μg/L)。结果表明,数据融合和机器学习技术可以提高对环境相关浓度下水生环境中污染物的检测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验