Suppr超能文献

癫痫发作前多日癫痫功能网络的时间演变

Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence.

作者信息

Laiou Petroula, Biondi Andrea, Bruno Elisa, Viana Pedro F, Winston Joel S, Rashid Zulqarnain, Ranjan Yatharth, Conde Pauline, Stewart Callum, Sun Shaoxiong, Zhang Yuezhou, Folarin Amos, Dobson Richard J B, Schulze-Bonhage Andreas, Dümpelmann Matthias, Richardson Mark P

机构信息

Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College, London SE5 8AF, UK.

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College, London SE5 8AF, UK.

出版信息

Biomedicines. 2022 Oct 21;10(10):2662. doi: 10.3390/biomedicines10102662.

Abstract

Epilepsy is one of the most common neurological disorders, characterized by the occurrence of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks. In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength, eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic functional networks over several days prior to seizure occurrence. We infer the networks using long-term electroencephalographic recordings from 12 people with epilepsy. We found that brain network metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of 12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure occurrence is significantly different compared to the corresponding distributions on all previous days. Our results suggest that brain network metrics computed fromelectroencephalographic recordings could potentially be used to characterize brain network changes that occur prior to seizures, and ultimately contribute to seizure warning systems.

摘要

癫痫是最常见的神经系统疾病之一,其特征是反复发生癫痫发作。鉴于癫痫被认为是一种网络疾病,源自网络神经科学的工具可能具有量化癫痫脑网络特性的宝贵能力。在本研究中,我们使用成熟的脑网络指标(即平均强度、强度方差、特征向量中心性、介数中心性)来表征癫痫发作前几天癫痫功能网络的时间演变。我们使用12名癫痫患者的长期脑电图记录来推断网络。我们发现脑网络指标在不同日期是可变的,并且呈现昼夜周期性。此外,我们发现12名患者中有9名在癫痫发作前一天(甚至最后两天)的强度方差分布与之前所有日子的相应分布相比有显著差异。我们的结果表明,从脑电图记录计算出的脑网络指标可能潜在地用于表征癫痫发作前发生的脑网络变化,并最终有助于癫痫预警系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验