Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia.
Genes (Basel). 2022 Sep 21;13(10):1694. doi: 10.3390/genes13101694.
We propose a novel effective framework for the analysis of the shared genetic background for a set of genetically correlated traits using SNP-level GWAS summary statistics. This framework called SHAHER is based on the construction of a linear combination of traits by maximizing the proportion of its genetic variance explained by the shared genetic factors. SHAHER requires only full GWAS summary statistics and matrices of genetic and phenotypic correlations between traits as inputs. Our framework allows both shared and unshared genetic factors to be effectively analyzed. We tested our framework using simulation studies, compared it with previous developments, and assessed its performance using three real datasets: anthropometric traits, psychiatric conditions and lipid concentrations. SHAHER is versatile and applicable to summary statistics from GWASs with arbitrary sample sizes and sample overlaps, allows for the incorporation of different GWAS models (Cox, linear and logistic), and is computationally fast.
我们提出了一个新颖的有效框架,用于使用 SNP 水平 GWAS 汇总统计信息分析一组遗传相关性状的共享遗传背景。这个名为 SHAHER 的框架基于通过最大化由共享遗传因素解释的性状遗传方差比例来构建性状的线性组合。SHAHER 仅需要完整的 GWAS 汇总统计信息和性状之间的遗传和表型相关性矩阵作为输入。我们的框架允许有效分析共享和非共享遗传因素。我们使用模拟研究对我们的框架进行了测试,将其与以前的研究进展进行了比较,并使用三个真实数据集评估了其性能:人体测量性状、精神状况和脂质浓度。SHAHER 具有通用性,适用于具有任意样本量和样本重叠的 GWAS 汇总统计信息,允许合并不同的 GWAS 模型(Cox、线性和逻辑),并且计算速度快。