Kim Junghi, Bai Yun, Pan Wei
Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America.
Genet Epidemiol. 2015 Dec;39(8):651-63. doi: 10.1002/gepi.21931. Epub 2015 Oct 22.
We study the problem of testing for single marker-multiple phenotype associations based on genome-wide association study (GWAS) summary statistics without access to individual-level genotype and phenotype data. For most published GWASs, because obtaining summary data is substantially easier than accessing individual-level phenotype and genotype data, while often multiple correlated traits have been collected, the problem studied here has become increasingly important. We propose a powerful adaptive test and compare its performance with some existing tests. We illustrate its applications to analyses of a meta-analyzed GWAS dataset with three blood lipid traits and another with sex-stratified anthropometric traits, and further demonstrate its potential power gain over some existing methods through realistic simulation studies. We start from the situation with only one set of (possibly meta-analyzed) genome-wide summary statistics, then extend the method to meta-analysis of multiple sets of genome-wide summary statistics, each from one GWAS. We expect the proposed test to be useful in practice as more powerful than or complementary to existing methods.
我们研究了基于全基因组关联研究(GWAS)汇总统计数据来检验单标记-多表型关联的问题,而无需获取个体水平的基因型和表型数据。对于大多数已发表的GWAS而言,由于获取汇总数据比获取个体水平的表型和基因型数据要容易得多,并且通常已经收集了多个相关性状,因此本文所研究的问题变得越来越重要。我们提出了一种强大的自适应检验方法,并将其性能与一些现有检验方法进行比较。我们举例说明了其在对包含三种血脂性状的荟萃分析GWAS数据集以及另一个包含按性别分层的人体测量性状的数据集进行分析中的应用,并通过实际模拟研究进一步证明了其相对于一些现有方法的潜在功效提升。我们从仅拥有一组(可能是荟萃分析的)全基因组汇总统计数据的情况开始,然后将该方法扩展到对多组全基因组汇总统计数据进行荟萃分析,每组数据来自一个GWAS。我们期望所提出的检验方法在实际应用中比现有方法更强大或具有互补性,从而发挥作用。