Suppr超能文献

一种利用全基因组关联研究汇总统计数据对多种表型进行的适应性关联测试。

An Adaptive Association Test for Multiple Phenotypes with GWAS Summary Statistics.

作者信息

Kim Junghi, Bai Yun, Pan Wei

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

Genet Epidemiol. 2015 Dec;39(8):651-63. doi: 10.1002/gepi.21931. Epub 2015 Oct 22.

Abstract

We study the problem of testing for single marker-multiple phenotype associations based on genome-wide association study (GWAS) summary statistics without access to individual-level genotype and phenotype data. For most published GWASs, because obtaining summary data is substantially easier than accessing individual-level phenotype and genotype data, while often multiple correlated traits have been collected, the problem studied here has become increasingly important. We propose a powerful adaptive test and compare its performance with some existing tests. We illustrate its applications to analyses of a meta-analyzed GWAS dataset with three blood lipid traits and another with sex-stratified anthropometric traits, and further demonstrate its potential power gain over some existing methods through realistic simulation studies. We start from the situation with only one set of (possibly meta-analyzed) genome-wide summary statistics, then extend the method to meta-analysis of multiple sets of genome-wide summary statistics, each from one GWAS. We expect the proposed test to be useful in practice as more powerful than or complementary to existing methods.

摘要

我们研究了基于全基因组关联研究(GWAS)汇总统计数据来检验单标记-多表型关联的问题,而无需获取个体水平的基因型和表型数据。对于大多数已发表的GWAS而言,由于获取汇总数据比获取个体水平的表型和基因型数据要容易得多,并且通常已经收集了多个相关性状,因此本文所研究的问题变得越来越重要。我们提出了一种强大的自适应检验方法,并将其性能与一些现有检验方法进行比较。我们举例说明了其在对包含三种血脂性状的荟萃分析GWAS数据集以及另一个包含按性别分层的人体测量性状的数据集进行分析中的应用,并通过实际模拟研究进一步证明了其相对于一些现有方法的潜在功效提升。我们从仅拥有一组(可能是荟萃分析的)全基因组汇总统计数据的情况开始,然后将该方法扩展到对多组全基因组汇总统计数据进行荟萃分析,每组数据来自一个GWAS。我们期望所提出的检验方法在实际应用中比现有方法更强大或具有互补性,从而发挥作用。

相似文献

1
An Adaptive Association Test for Multiple Phenotypes with GWAS Summary Statistics.
Genet Epidemiol. 2015 Dec;39(8):651-63. doi: 10.1002/gepi.21931. Epub 2015 Oct 22.
2
Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
Bioinformatics. 2019 Jul 1;35(13):2251-2257. doi: 10.1093/bioinformatics/bty961.
3
Multiple phenotype association tests using summary statistics in genome-wide association studies.
Biometrics. 2018 Mar;74(1):165-175. doi: 10.1111/biom.12735. Epub 2017 Jun 26.
4
Truncated tests for combining evidence of summary statistics.
Genet Epidemiol. 2020 Oct;44(7):687-701. doi: 10.1002/gepi.22330. Epub 2020 Jun 24.
5
Methods for meta-analysis of multiple traits using GWAS summary statistics.
Genet Epidemiol. 2018 Mar;42(2):134-145. doi: 10.1002/gepi.22105. Epub 2017 Dec 10.
6
Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
Biometrics. 2019 Dec;75(4):1076-1085. doi: 10.1111/biom.13076. Epub 2019 Aug 2.
7
Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.
Genetics. 2017 Dec;207(4):1285-1299. doi: 10.1534/genetics.117.300347. Epub 2017 Oct 2.
8
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.
9
Adaptive gene- and pathway-trait association testing with GWAS summary statistics.
Bioinformatics. 2016 Apr 15;32(8):1178-84. doi: 10.1093/bioinformatics/btv719. Epub 2015 Dec 10.
10
Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data.
Bioinformatics. 2019 Apr 15;35(8):1366-1372. doi: 10.1093/bioinformatics/bty811.

引用本文的文献

2
Methodological opportunities in genomic data analysis to advance health equity.
Nat Rev Genet. 2025 May 15. doi: 10.1038/s41576-025-00839-w.
3
Bivariate genome-wide association study of circulating fibrinogen and C-reactive protein levels.
J Thromb Haemost. 2024 Dec;22(12):3448-3459. doi: 10.1016/j.jtha.2024.08.021. Epub 2024 Sep 17.
4
A novel method for multiple phenotype association studies based on genotype and phenotype network.
PLoS Genet. 2024 May 10;20(5):e1011245. doi: 10.1371/journal.pgen.1011245. eCollection 2024 May.
5
Inferring a directed acyclic graph of phenotypes from GWAS summary statistics.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad039.
6
Conditional transcriptome-wide association study for fine-mapping candidate causal genes.
Nat Genet. 2024 Feb;56(2):348-356. doi: 10.1038/s41588-023-01645-y. Epub 2024 Jan 26.
7
Subset scanning for multi-trait analysis using GWAS summary statistics.
Bioinformatics. 2024 Jan 2;40(1). doi: 10.1093/bioinformatics/btad777.
8
Inferring a directed acyclic graph of phenotypes from GWAS summary statistics.
bioRxiv. 2023 Nov 25:2023.02.10.528092. doi: 10.1101/2023.02.10.528092.
10
Two-stage multivariate Mendelian randomization on multiple outcomes with mixed distributions.
Stat Methods Med Res. 2023 Aug;32(8):1543-1558. doi: 10.1177/09622802231181220. Epub 2023 Jun 20.

本文引用的文献

1
On random-effects meta-analysis.
Biometrika. 2015 Jun;102(2):281-294. doi: 10.1093/biomet/asv011. Epub 2015 Apr 23.
2
Testing for polygenic effects in genome-wide association studies.
Genet Epidemiol. 2015 May;39(4):306-16. doi: 10.1002/gepi.21899. Epub 2015 Apr 6.
3
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Genet Epidemiol. 2015 May;39(4):259-75. doi: 10.1002/gepi.21895. Epub 2015 Mar 23.
4
Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension.
Am J Hum Genet. 2015 Jan 8;96(1):21-36. doi: 10.1016/j.ajhg.2014.11.011. Epub 2014 Dec 11.
5
GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation.
PLoS Genet. 2014 Nov 13;10(11):e1004787. doi: 10.1371/journal.pgen.1004787. eCollection 2014 Nov.
6
Testing genetic association by regressing genotype over multiple phenotypes.
PLoS One. 2014 Sep 15;9(9):e106918. doi: 10.1371/journal.pone.0106918. eCollection 2014.
7
Comparison of statistical tests for group differences in brain functional networks.
Neuroimage. 2014 Nov 1;101:681-94. doi: 10.1016/j.neuroimage.2014.07.031. Epub 2014 Jul 30.
8
Biological insights from 108 schizophrenia-associated genetic loci.
Nature. 2014 Jul 24;511(7510):421-7. doi: 10.1038/nature13595. Epub 2014 Jul 22.
9
A powerful and adaptive association test for rare variants.
Genetics. 2014 Aug;197(4):1081-95. doi: 10.1534/genetics.114.165035. Epub 2014 May 15.
10
A comparison of multivariate genome-wide association methods.
PLoS One. 2014 Apr 24;9(4):e95923. doi: 10.1371/journal.pone.0095923. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验