Suppr超能文献

Developmental anomalies induced by all-trans-retinoic acid in fetal mice: II. Induction of abnormal neuroepithelium.

作者信息

Yasuda Y, Konishi H, Kihara T, Tanimura T

出版信息

Teratology. 1987 Jun;35(3):355-66. doi: 10.1002/tera.1420350310.

Abstract

All-trans-retinoic acid (RA) in olive oil was given in doses of 0, 40, or 60 mg/kg of body weight to pregnant mice on day 8 of gestation, and 2-6 hr later embryos were fixed in solutions with or without cetylpyridinium chloride (CPC). The neuroepithelium of the presumptive midbrain was processed for light and electron microscopy. Distorted contours of the neuroepithelium were induced by both doses of RA and the incidence and the severity of the disorganized neuroepithelium showed dose-related results. Abnormal neuroepithelium showed wide intercellular spaces with degenerated cytoplasmic processes or cell debris, separation of the apical side from adjacent cells, retention of mitotic and/or postmitotic cells on the apical side, presence of mitotic cells on the basal side, and detachment of degenerated structures from the neuroepithelium. Ultrastructurally, the affected neuroepithelium showed (1) appearance of degenerating filamentous or tubular coagulating bundles in the cytoplasm and the cytoplasmic process of the neural crest cells, (2) dispersal of polysomes into monosomes especially in the degenerating neural crest cells, (3) and a collecting of microfilament-like structures at the contact area between the neural crest cell and the presumptive neuroblast. These morphological changes suggest that RA affects the nature of cytoskeletal elements and the protein synthesis of the neuroepithelial cells. The selective susceptibility of neural crest cells to RA causes more degenerating neural crest cells in the neuroepithelium, which causes nonapproximation of the neural folds and scantiness of the migrating neural crest cells; these results lead to neural tube defects and craniofacial anomalies, respectively.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验