Suppr超能文献

确定外生电微生物的剂量反应曲线:一种用于水毒性监测的微型微生物燃料电池生物传感器。

Determining the Dose-Response Curve of Exoelectrogens: A Microscale Microbial Fuel Cell Biosensor for Water Toxicity Monitoring.

作者信息

Fei Sitao, Ren Hao

机构信息

School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.

出版信息

Micromachines (Basel). 2022 Sep 21;13(10):1560. doi: 10.3390/mi13101560.

Abstract

Nowadays, the development of real-time water quality monitoring sensors is critical. However, traditional water monitoring technologies, such as enzyme-linked immunosorbent assay (ELISA), liquid chromatography, mass spectroscopy, luminescence screening, surface plasma resonance (SPR), and analysis of living bioindicators, are either time consuming or require expensive equipment and special laboratories. Because of the low cost, self-sustainability, direct current output and real-time response, microbial fuel cells (MFCs) have been implemented as biosensors for water toxicity monitoring. In this paper, we report a microscale MFC biosensor to study the dose-response curve of exoelectrogen to toxic compounds in water. The microscale MFC biosensor has an anode chamber volume of 200 μL, which requires less sample consumption for water toxicity monitoring compared with macroscale or mesoscale MFC biosensors. For the first time, the MFC biosensor is exposed to a large formaldehyde concentration range of more than 3 orders of magnitudes, from a low concentration of 1 × 10 g/L to a high concentration of 3 × 10 g/L in water, while prior studies investigated limited formaldehyde concentration ranges, such as a small concentration range of 1 × 10 g/L to 2 × 10 g/L or only one high concentration of 0.1 g/L. As a result, for the first time, a sigmoid dose-response relationship of normalized dose-response versus formaldehyde concentration in water is observed, in agreement with traditional toxicology dose-response curve obtained by other measurement techniques. The biosensor has potential applications in determining dose-response curves for toxic compounds and detecting toxic compounds in water.

摘要

如今,实时水质监测传感器的发展至关重要。然而,传统的水监测技术,如酶联免疫吸附测定(ELISA)、液相色谱、质谱、发光筛选、表面等离子体共振(SPR)以及活体生物指示剂分析,要么耗时,要么需要昂贵的设备和特殊实验室。由于成本低、自我可持续性、直流输出和实时响应,微生物燃料电池(MFC)已被用作水毒性监测的生物传感器。在本文中,我们报告了一种微型MFC生物传感器,用于研究产电微生物对水中有毒化合物的剂量反应曲线。该微型MFC生物传感器的阳极室体积为200μL,与大型或中型MFC生物传感器相比,其在水毒性监测中所需的样品消耗量更少。首次将MFC生物传感器暴露于超过3个数量级的大甲醛浓度范围,从水中低浓度的1×10 g/L到高浓度的3×10 g/L,而先前的研究调查的甲醛浓度范围有限,例如小浓度范围1×10 g/L至2×10 g/L或仅一个高浓度0.1 g/L。结果,首次观察到水中归一化剂量反应与甲醛浓度之间的S形剂量反应关系,这与通过其他测量技术获得的传统毒理学剂量反应曲线一致。该生物传感器在确定有毒化合物的剂量反应曲线和检测水中有毒化合物方面具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6c/9609928/495fa98f33a5/micromachines-13-01560-g001.jpg

相似文献

2
Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.
Sensors (Basel). 2017 Sep 28;17(10):2230. doi: 10.3390/s17102230.
4
Silicon-based microfabricated microbial fuel cell toxicity sensor.
Biosens Bioelectron. 2011 Jan 15;26(5):2426-30. doi: 10.1016/j.bios.2010.10.025. Epub 2010 Oct 21.
5
Microbial Fuel Cell-Based Biosensors.
Biosensors (Basel). 2019 Jul 23;9(3):92. doi: 10.3390/bios9030092.
6
A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.
Chemosphere. 2018 Jul;203:21-25. doi: 10.1016/j.chemosphere.2018.03.169. Epub 2018 Mar 26.
7
Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality.
Water Res. 2017 Jun 15;117:9-17. doi: 10.1016/j.watres.2017.03.040. Epub 2017 Mar 19.
10
On-line monitoring of water quality with a floating microbial fuel cell biosensor: field test results.
Ecotoxicology. 2021 Jul;30(5):851-862. doi: 10.1007/s10646-021-02409-2. Epub 2021 Apr 13.

引用本文的文献

本文引用的文献

1
Microbial fuel cells for in-field water quality monitoring.
RSC Adv. 2021 May 4;11(27):16307-16317. doi: 10.1039/d1ra01138c. eCollection 2021 Apr 30.
2
Colorimetric and Electrochemical Dual-Signal Method for Water Toxicity Detection Based on and -Benzoquinone.
ACS Sens. 2021 Jul 23;6(7):2674-2681. doi: 10.1021/acssensors.1c00651. Epub 2021 Jun 29.
3
Microbial Fuel Cell-Based Biological Oxygen Demand Sensors for Monitoring Wastewater: State-of-the-Art and Practical Applications.
ACS Sens. 2020 Aug 28;5(8):2297-2316. doi: 10.1021/acssensors.0c01299. Epub 2020 Aug 14.
4
Portable, Disposable, Paper-Based Microbial Fuel Cell Sensor Utilizing Freeze-Dried Bacteria for In Situ Water Quality Monitoring.
ACS Omega. 2020 Jun 1;5(23):13940-13947. doi: 10.1021/acsomega.0c01333. eCollection 2020 Jun 16.
5
A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells.
Biosens Bioelectron. 2020 Aug 15;162:112259. doi: 10.1016/j.bios.2020.112259. Epub 2020 May 8.
6
Nanosensors for water quality monitoring.
Nat Nanotechnol. 2018 Aug;13(8):651-660. doi: 10.1038/s41565-018-0209-9. Epub 2018 Aug 6.
7
A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water.
Biosens Bioelectron. 2018 Apr 15;102:49-56. doi: 10.1016/j.bios.2017.11.018. Epub 2017 Nov 6.
9
New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water.
Chemosphere. 2017 Oct;184:106-111. doi: 10.1016/j.chemosphere.2017.05.154. Epub 2017 May 29.
10
Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring.
Sens Actuators B Chem. 2017 Jun;244:815-822. doi: 10.1016/j.snb.2017.01.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验