Suppr超能文献

一种利用无人机进行登革热根除与控制的医疗物联网隐私保护方案。

A Privacy-Preserved Internet-of-Medical-Things Scheme for Eradication and Control of Dengue Using UAV.

作者信息

Ali Amir, Nisar Shibli, Khan Muhammad Asghar, Mohsan Syed Agha Hassnain, Noor Fazal, Mostafa Hala, Marey Mohamed

机构信息

Military College of Signals (MCS), National University of Sciences and Technology, Islamabad 44000, Pakistan.

Department of Electrical Engineering, Hamdard University, Islamabad 44000, Pakistan.

出版信息

Micromachines (Basel). 2022 Oct 10;13(10):1702. doi: 10.3390/mi13101702.

Abstract

Dengue is a mosquito-borne viral infection, found in tropical and sub-tropical climates worldwide, mostly in urban and semi-urban areas. Countries like Pakistan receive heavy rains annually resulting in floods in urban cities due to poor drainage systems. Currently, different cities of Pakistan are at high risk of dengue outbreaks, as multiple dengue cases have been reported due to poor flood control and drainage systems. After heavy rain in urban areas, mosquitoes are provided with a favorable environment for their breeding and transmission through stagnant water due to poor maintenance of the drainage system. The history of the dengue virus in Pakistan shows that there is a closed relationship between dengue outbreaks and a rainfall. There is no specific treatment for dengue; however, the outbreak can be controlled through internet of medical things (IoMT). In this paper, we propose a novel privacy-preserved IoMT model to control dengue virus outbreaks by tracking dengue virus-infected patients based on bedding location extracted using call data record analysis (CDRA). Once the bedding location of the patient is identified, then the actual infected spot can be easily located by using geographic information system mapping. Once the targeted spots are identified, then it is very easy to eliminate the dengue by spraying the affected areas with the help of unmanned aerial vehicles (UAVs). The proposed model identifies the targeted spots up to 100%, based on the bedding location of the patient using CDRA.

摘要

登革热是一种由蚊子传播的病毒感染,在全球热带和亚热带气候地区都有发现,主要集中在城市和半城市地区。像巴基斯坦这样的国家每年都会有暴雨,由于排水系统不完善,导致城市发生洪水。目前,巴基斯坦的不同城市都面临着登革热爆发的高风险,因为由于洪水控制和排水系统不佳,已经报告了多例登革热病例。城市地区暴雨过后,由于排水系统维护不善,积水为蚊子提供了繁殖和传播的有利环境。巴基斯坦登革热病毒的历史表明,登革热爆发与降雨之间存在密切关系。登革热没有特定的治疗方法;然而,可以通过医疗物联网(IoMT)来控制疫情爆发。在本文中,我们提出了一种新颖的隐私保护IoMT模型,通过基于通话数据记录分析(CDRA)提取的卧床位置跟踪登革热病毒感染患者,来控制登革热病毒的爆发。一旦确定了患者的卧床位置,那么通过使用地理信息系统地图就可以很容易地找到实际感染地点。一旦确定了目标地点,那么借助无人机对受影响地区进行喷洒就很容易消灭登革热。所提出的模型基于使用CDRA的患者卧床位置,能100%识别出目标地点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe24/9609698/f680e91670ce/micromachines-13-01702-g001.jpg

相似文献

1
A Privacy-Preserved Internet-of-Medical-Things Scheme for Eradication and Control of Dengue Using UAV.
Micromachines (Basel). 2022 Oct 10;13(10):1702. doi: 10.3390/mi13101702.
2
Devastating urban flooding and dengue outbreak during the COVID-19 pandemic in Pakistan.
Med J Islam Repub Iran. 2020 Dec 15;34:169. doi: 10.47176/mjiri.34.169. eCollection 2020.
3
4
A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan.
PLoS One. 2016 Feb 5;11(2):e0147416. doi: 10.1371/journal.pone.0147416. eCollection 2016.
5
A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping.
PLoS Negl Trop Dis. 2021 Sep 27;15(9):e0009679. doi: 10.1371/journal.pntd.0009679. eCollection 2021 Sep.
6
Choice of unmanned aerial vehicles for identification of mosquito breeding sites.
Geospat Health. 2020 Jun 17;15(1). doi: 10.4081/gh.2020.810.
8
UAV IoT Framework Views and Challenges: Towards Protecting Drones as "Things".
Sensors (Basel). 2018 Nov 17;18(11):4015. doi: 10.3390/s18114015.
9
Year-round dengue fever in Pakistan, highlighting the surge amidst ongoing flood havoc and the COVID-19 pandemic: a comprehensive review.
Ann Med Surg (Lond). 2023 Apr 10;85(4):908-912. doi: 10.1097/MS9.0000000000000418. eCollection 2023 Apr.
10
Dengue transmission based on urban environmental gradients in different cities of Pakistan.
Int J Biometeorol. 2015 Mar;59(3):267-83. doi: 10.1007/s00484-014-0840-6. Epub 2014 May 10.

引用本文的文献

1
Innovative applications of artificial intelligence in zoonotic disease management.
Sci One Health. 2023 Nov 3;2:100045. doi: 10.1016/j.soh.2023.100045. eCollection 2023.
2
Editorial for the Special Issue on Micro Air Vehicles.
Micromachines (Basel). 2023 Mar 24;14(4):721. doi: 10.3390/mi14040721.

本文引用的文献

1
Minimizing Viral Transmission in COVID-19 Like Pandemics: Technologies, Challenges, and Opportunities.
IEEE Sens J. 2022 Apr 25;23(2):922-932. doi: 10.1109/JSEN.2022.3170521. eCollection 2023 Jan.
3
A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping.
PLoS Negl Trop Dis. 2021 Sep 27;15(9):e0009679. doi: 10.1371/journal.pntd.0009679. eCollection 2021 Sep.
4
Modeling quarantine during epidemics and mass-testing using drones.
PLoS One. 2020 Jun 24;15(6):e0235307. doi: 10.1371/journal.pone.0235307. eCollection 2020.
5
Choice of unmanned aerial vehicles for identification of mosquito breeding sites.
Geospat Health. 2020 Jun 17;15(1). doi: 10.4081/gh.2020.810.
7
Assessing the interplay between human mobility and mosquito borne diseases in urban environments.
Sci Rep. 2019 Nov 15;9(1):16911. doi: 10.1038/s41598-019-53127-z.
8
Lag effect of climatic variables on dengue burden in India.
Epidemiol Infect. 2019 Jan;147:e170. doi: 10.1017/S0950268819000608.
9
Severe Dengue Prognosis Using Human Genome Data and Machine Learning.
IEEE Trans Biomed Eng. 2019 Oct;66(10):2861-2868. doi: 10.1109/TBME.2019.2897285. Epub 2019 Feb 4.
10
The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis.
Biomed Eng Online. 2018 Nov 6;17(Suppl 2):148. doi: 10.1186/s12938-018-0575-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验