Guaya Diana, Cobos Hernán, Valderrama César, Cortina José Luis
Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110107, Ecuador.
Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain.
Nanomaterials (Basel). 2022 Oct 20;12(20):3680. doi: 10.3390/nano12203680.
A parent Mg-Al-LDH was upgraded in its adsorption properties due to the incorporation of tri-metal species oxy(hydroxide) nanoparticles obtaining Mn/Zn/Fe/Mg-Al-LDH composite for the phosphate recovery from simulated urban treated wastewater. The physicochemical properties of the synthesized Mn/Zn/Fe/Mg-Al-LDH make promising for real application without being environmentally harmful. The performance of Mn/Zn/Fe/Mg-Al-LDH composite was evaluated through batch adsorption assays. The support of iron, manganese, and zinc (oxy)hydroxide nanoparticles onto the parent Mg-Al-LDH structure was performed by precipitation, isomorphic substitution, and complexation reactions. The main improvement of the Mn/Zn/Fe/Mg-Al-LDH composite was the highest phosphate adsorption capacity (82.3 mg∙g) in comparison to the parent Mg-Al-LDH (65.3 mg∙g), in a broad range of concentrations and the effective phosphate adsorption at neutral pH (7.5) near to the real wastewater effluents conditions in comparison to the conventional limitations of other adsorbents. The effectiveness of Mn/Zn/Fe/Mg-Al-LDH composite was higher than the conventional metal LDHs materials synthesized in a single co-precipitation step. The phosphate adsorption onto Mn/Zn/Fe/Mg-Al-LDH composite was described to be governed by both physical and chemical interactions. The support of Mn/Zn/Fe oxy(hydroxide) nanoparticles over the parent Mg-Al-LDH was a determinant for the improvement of the phosphate adsorption that was governed by complexation, hydrogen bonding, precipitation, and anion exchange. The intra-particular diffusion also described well the phosphate adsorption onto the Mn/Zn/Fe/Mg-Al-LDH composite. Three specific stages of adsorption were determined during the phosphate immobilization with an initial fast rate, followed by the diffusion through the internal pores and the final equilibrium stage, reaching 80% of removal and the equilibrium within 1 h. The Mn/Zn/Fe/Mg-Al-LDH was strongly selective towards phosphate adsorption in presence of competing ions reducing the adsorption capacity at 20%. The Mn/Zn/Fe/Mg-Al-LDH has limited reusability, only 51% of the adsorbed phosphate could be recovered in the second cycle of the adsorption-desorption process. Around 14% of phosphate was loosely-bond to Mn/Zn/Fe/Mg-Al-LDH which brings the opportunity to be a new source of phosphorus. The use of eluted concentrates and the final disposal of the exhausted adsorbent for soil amendment applications can be an integral nutrient system (P, Mn, Zn, Fe) for agriculture purposes.
通过引入三金属羟基氧化物纳米颗粒,制备了用于从模拟城市处理废水中回收磷的Mn/Zn/Fe/Mg-Al-LDH复合材料,从而提升了母体Mg-Al-LDH的吸附性能。合成的Mn/Zn/Fe/Mg-Al-LDH的物理化学性质使其在实际应用中具有前景且对环境无害。通过批量吸附试验评估了Mn/Zn/Fe/Mg-Al-LDH复合材料的性能。通过沉淀、同晶取代和络合反应,将铁、锰和锌的羟基氧化物纳米颗粒负载到母体Mg-Al-LDH结构上。Mn/Zn/Fe/Mg-Al-LDH复合材料的主要改进在于,与母体Mg-Al-LDH(65.3 mg∙g)相比,在较宽的浓度范围内具有最高的磷吸附容量(82.3 mg∙g),并且在接近实际废水排放条件的中性pH(7.5)下能有效吸附磷,这优于其他吸附剂的传统局限性。Mn/Zn/Fe/Mg-Al-LDH复合材料的有效性高于在单一共沉淀步骤中合成的传统金属LDH材料。Mn/Zn/Fe/Mg-Al-LDH复合材料对磷的吸附被认为是由物理和化学相互作用共同控制的。Mn/Zn/Fe羟基氧化物纳米颗粒负载在母体Mg-Al-LDH上是磷吸附改善的决定性因素,其受络合、氢键、沉淀和阴离子交换控制。颗粒内扩散也很好地描述了磷在Mn/Zn/Fe/Mg-Al-LDH复合材料上的吸附。在磷固定过程中确定了三个特定的吸附阶段,初始速率较快,随后通过内部孔隙扩散,最后达到平衡阶段,在1小时内达到80%的去除率并达到平衡。在存在竞争离子的情况下,Mn/Zn/Fe/Mg-Al-LDH对磷吸附具有很强的选择性,吸附容量降低20%。Mn/Zn/Fe/Mg-Al-LDH的可重复使用性有限,在吸附-解吸过程的第二个循环中,仅能回收51%吸附的磷。约14%的磷与Mn/Zn/Fe/Mg-Al-LDH松散结合,这使其有机会成为新的磷源。使用洗脱浓缩物并将耗尽的吸附剂最终用于土壤改良应用,可以成为农业用途的完整养分系统(P、Mn、Zn、Fe)。