Mollard Federico P O, Di Bella Carla E, Loguzzo María B, Grimoldi Agustín A, Striker Gustavo G
IFEVA, CONICET, Cátedra de Fisiología Vegetal, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina.
IFEVA, CONICET, Cátedra de Forrajicultura, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina.
Plants (Basel). 2022 Oct 13;11(20):2699. doi: 10.3390/plants11202699.
Climate models predict that plants will face extreme fluctuations in water availability in future global change scenarios. Then, forage production will be more frequently subjected to the destabilizing pressure of sequentially occurring waterlogging and drought events. While the isolated effects of drought (D) and waterlogging (WL) are well characterized, little is known about the consequences when both stresses occur sequentially. We hypothesized that plants sequentially subjected to opposite water scenarios (D followed by WL or vice versa) are less stress tolerant than plants experiencing repetitions of the same type of water stress (i.e., D + D or WL + WL) due to contrasting acclimation and allocation to either shoots (WL) or roots (D). (a tropical forage grass capable of tolerating either D and WL) plants were randomly assigned to nine treatments (a sequence of two stress rounds-WL or D-each followed by a recovery phase at field capacity). Relative growth rates and allometric responses were measured after each stress round and recovery period. In the first round of stress, both WL and D reduced plant RGR similarly, despite their allocation being opposite-prioritizing shoots or roots under WL and D, respectively. The high recovery displayed after either WL or D overrode any possible acclimation of the plants facing a second round of water stress. We conclude that the tolerance of to sequential water stress (either for WL or D) is likely to depend more heavily on its recovery ability than on its previous adjustment to any stress scenario that may evoke memory responses. Knowledge like this could help improve forage grass breeding and the selection of cultivars for poorly drained soils subject to sequential stress events.
气候模型预测,在未来的全球变化情景下,植物将面临水资源可利用性的极端波动。届时,牧草生产将更频繁地受到相继出现的涝灾和旱灾造成的不稳定压力影响。虽然干旱(D)和涝灾(WL)的单独影响已得到充分描述,但对于这两种胁迫相继发生时的后果却知之甚少。我们假设,由于对地上部分(WL)或根系(D)的适应和分配不同,先后经历相反水分状况(D后接WL或反之)的植物比经历相同类型水分胁迫重复(即D+D或WL+WL)的植物更不耐胁迫。(一种能够耐受D和WL的热带牧草)植株被随机分配到九种处理中(两轮胁迫——WL或D——的序列,每次胁迫后在田间持水量下恢复)。在每轮胁迫和恢复期后测量相对生长率和异速生长响应。在第一轮胁迫中,WL和D对植物相对生长率的降低程度相似,尽管它们的分配相反——在WL和D条件下分别优先考虑地上部分或根系。WL或D后显示出的高恢复能力克服了植物面对第二轮水分胁迫时任何可能的适应性变化。我们得出结论,对相继水分胁迫(无论是WL还是D)的耐受性可能更多地取决于其恢复能力,而非其先前对任何可能引发记忆反应的胁迫情景的调整。这样的知识有助于改进牧草育种以及为遭受相继胁迫事件的排水不良土壤选择品种。