Suppr超能文献

基于机器学习的近地表臭氧预测模型,融合行星边界层信息。

Machine-Learning-Based Near-Surface Ozone Forecasting Model with Planetary Boundary Layer Information.

机构信息

Department of Electronics Engineering, Kangwon National University, Chuncheon 24341, Korea.

Qualcomm Institute, University of California, San Diego (UCSD), San Diego, CA 92093, USA.

出版信息

Sensors (Basel). 2022 Oct 16;22(20):7864. doi: 10.3390/s22207864.

Abstract

Surface ozone is one of six air pollutants designated as harmful by National Ambient Air Quality Standards because it can adversely impact human health and the environment. Thus, ozone forecasting is a critical task that can help people avoid dangerously high ozone concentrations. Conventional numerical approaches, as well as data-driven forecasting approaches, have been studied for ozone forecasting. Data-driven forecasting models, in particular, have gained momentum with the introduction of machine learning advancements. We consider planetary boundary layer (PBL) height as a new input feature for data-driven ozone forecasting models. PBL has been shown to impact ozone concentrations, making it an important factor in ozone forecasts. In this paper, we investigate the effectiveness of utilization of PBL height on the performance of surface ozone forecasts. We present both surface ozone forecasting models, based on multilayer perceptron (MLP) and bidirectional long short-term memory (LSTM) models. These two models forecast hourly ozone concentrations for an upcoming 24-h period using two types of input data, such as measurement data and PBL height. We consider the predicted values of PBL height obtained from the weather research and forecasting (WRF) model, since it is difficult to gather actual PBL measurements. We evaluate two ozone forecasting models in terms of index of agreement (IOA), mean absolute error (MAE), and root mean square error (RMSE). Results showed that the MLP-based and bidirectional LSTM-based models yielded lower MAE and RMSE when considering forecasted PBL height, but there was no significant changes in IOA when compared with models in which no forecasted PBL data were used. This result suggests that utilizing forecasted PBL height can improve the forecasting performance of data-driven prediction models for surface ozone concentrations.

摘要

地面臭氧是国家环境空气质量标准指定的六种有害空气污染物之一,因为它会对人类健康和环境造成不利影响。因此,臭氧预测是一项关键任务,可以帮助人们避免高浓度的臭氧。传统的数值方法和数据驱动的预测方法都已经被研究用于臭氧预测。特别是,随着机器学习的进步,数据驱动的预测模型得到了迅猛发展。我们将行星边界层 (PBL) 高度视为数据驱动的臭氧预测模型的新输入特征。已经证明 PBL 会影响臭氧浓度,使其成为臭氧预测的一个重要因素。在本文中,我们研究了在数据驱动的臭氧预测模型中利用 PBL 高度的有效性。我们提出了两种基于多层感知器 (MLP) 和双向长短期记忆 (LSTM) 模型的地面臭氧预测模型。这两种模型使用两种类型的输入数据,即测量数据和 PBL 高度,预测未来 24 小时的每小时臭氧浓度。我们考虑使用天气研究和预报 (WRF) 模型获得的 PBL 高度预测值,因为很难收集实际的 PBL 测量值。我们根据一致性指数 (IOA)、平均绝对误差 (MAE) 和均方根误差 (RMSE) 来评估两种臭氧预测模型。结果表明,当考虑预测的 PBL 高度时,基于 MLP 和双向 LSTM 的模型的 MAE 和 RMSE 更低,但与不使用预测 PBL 数据的模型相比,IOA 没有显著变化。这一结果表明,利用预测的 PBL 高度可以提高数据驱动的地面臭氧浓度预测模型的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5448/9610675/f06e7e6a9c63/sensors-22-07864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验