Suppr超能文献

基于加权随机区间划分的可排序加密方案在可穿戴系统中密文比较的应用。

An Order-Preserving Encryption Scheme Based on Weighted Random Interval Division for Ciphertext Comparison in Wearable Systems.

机构信息

Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Shaanxi Provincial Key Laboratory of Computer Network, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Sensors (Basel). 2022 Oct 18;22(20):7950. doi: 10.3390/s22207950.

Abstract

With the rapid development of wearable devices with various sensors, massive sensing data for health management have been generated. This causes a potential revolution in medical treatments, diagnosis, and prediction. However, due to the privacy risks of health data aggregation, data comparative analysis under privacy protection faces challenges. Order-preserving encryption is an effective scheme to achieve private data retrieval and comparison, but the existing order-preserving encryption algorithms are mainly aimed at either integer data or single characters. It is urgent to build a lightweight order-preserving encryption scheme that supports multiple types of data such as integer, floating number, and string. In view of the above problems, this paper proposes an order-preserving encryption scheme (WRID-OPES) based on weighted random interval division (WRID). WRID-OPES converts all kinds of data into hexadecimal number strings and calculates the frequency and weight of each hexadecimal number. The plaintext digital string is blocked and recombined, and each block is encrypted using WRID algorithm according to the weight of each hexadecimal digit. Our schemes can realize the order-preserving encryption of multiple types of data and achieve indistinguishability under ordered selection plaintext attack (IND-OCPA) security in static data sets. Security analysis and experiments show that our scheme can resist attacks using exhaustive methods and statistical methods and has linear encryption time and small ciphertext expansion rate.

摘要

随着各种传感器的可穿戴设备的快速发展,已经产生了大量用于健康管理的传感数据。这在医疗治疗、诊断和预测方面带来了潜在的变革。然而,由于健康数据聚合的隐私风险,在隐私保护下进行数据比较分析面临挑战。保序加密是实现隐私数据检索和比较的有效方案,但现有的保序加密算法主要针对整数数据或单个字符。因此,迫切需要构建一种支持整数、浮点数和字符串等多种类型数据的轻量级保序加密方案。针对上述问题,本文提出了一种基于加权随机区间划分(WRID)的保序加密方案(WRID-OPES)。WRID-OPES 将所有类型的数据转换为十六进制数字字符串,并计算每个十六进制数字的频率和权重。明文数字串被分块和重组,每个块根据每个十六进制数字的权重使用 WRID 算法进行加密。我们的方案可以实现多种类型数据的保序加密,并在静态数据集下实现有序选择明文攻击(IND-OCPA)安全性的不可区分性。安全性分析和实验表明,我们的方案可以抵抗使用穷尽法和统计法的攻击,并且具有线性加密时间和较小的密文扩展率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce1/9611896/081bc5d9acc9/sensors-22-07950-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验