Li Niehong, Zou Debin, Zhao Na, Jiang Xiangrui, Shao Fuqiu, Yu Tongpu
Opt Express. 2022 Oct 24;30(22):39631-39642. doi: 10.1364/OE.472843.
The rapid development of laser technologies promises a significant growth of peak laser intensity from 10 W/cm to >10 W/cm, allowing the experimental studies of strong field quantum-electrodynamics physics and laser nuclear physics. Here, we propose a method to realize the ultra-intense laser field amplification of petawatt-class laser pulse in moderate density plasma via relativistic self-focusing and tapered-channel focusing. Three-dimensional particle-in-cell simulations demonstrate that almost an order of magnitude enhancement of laser intensity is possible even though the γ-ray radiation results in massive laser energy loss. In particular, with a seed laser intensity of ∼10 W/cm, duration of 82.5 fs and power of 31 petawatt, one can obtain ∼10 W/cm intensity and up to ∼60% energy conversion efficiency from the initial seed laser to the focused laser in plasma with density of 3.3 × 10/cm. This may pave the way to the new research field of ultra-intense laser plasma interaction in the upcoming laser facilities.
激光技术的快速发展有望使激光峰值强度从10 W/cm显著增长至超过10 W/cm,从而能够开展强场量子电动力学物理和激光核物理的实验研究。在此,我们提出一种方法,通过相对论自聚焦和锥形通道聚焦,在中等密度等离子体中实现拍瓦级激光脉冲的超强激光场放大。三维粒子模拟表明,即便γ射线辐射导致大量激光能量损失,激光强度仍有可能增强近一个数量级。特别是,对于种子激光强度约为10 W/cm、持续时间为82.5 fs且功率为31拍瓦的情况,在密度为3.3×10/cm的等离子体中,从初始种子激光到聚焦激光,能够获得约10 W/cm的强度以及高达约60%的能量转换效率。这可能为即将建成的激光装置中超强激光与等离子体相互作用的新研究领域铺平道路。