Chopineau Ludovic, Denoeud Adrien, Leblanc Adrien, Porat Elkana, Martin Philippe, Vincenti Henri, Quéré Fabien
Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France.
LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex France.
Nat Phys. 2021 Aug;17(8):968-973. doi: 10.1038/s41567-021-01253-9. Epub 2021 Jun 3.
Reaching light intensities above 10 W/cm and up to the Schwinger limit of the order of 10 W/cm would enable testing fundamental predictions of quantum electrodynamics. A promising - yet challenging - approach to achieve such extreme fields consists in reflecting a high-power femtosecond laser pulse off a curved relativistic mirror. This enhances the intensity of the reflected beam by simultaneously compressing it in time down to the attosecond range, and focusing it to sub-micrometre focal spots. Here we show that such curved relativistic mirrors can be produced when an ultra-intense laser pulse ionizes a solid target and creates a dense plasma that specularly reflects the incident light. This is evidenced by measuring the temporal and spatial effects induced on the reflected beam by this so-called 'plasma mirror'. The all-optical measurement technique demonstrated here will be instrumental for the use of relativistic plasma mirrors with the upcoming generation of Petawatt lasers that recently reached intensities of 5 × 10 W/cm, and therefore constitutes a viable experimental path to the Schwinger limit.
达到高于10¹⁸W/cm²并直至约10²⁹W/cm²的施温格极限的光强,将能够对量子电动力学的基本预测进行测试。一种实现此类极端场的有前景但具有挑战性的方法是,让高功率飞秒激光脉冲从弯曲的相对论性镜面上反射。这通过在时间上将反射光束同时压缩至阿秒范围,并将其聚焦到亚微米级焦斑,从而提高反射光束的强度。在此我们表明,当超强激光脉冲使固体靶电离并产生能镜面反射入射光的稠密等离子体时,就能制造出这种弯曲的相对论性镜面。这通过测量由这种所谓的“等离子体镜”在反射光束上引起的时间和空间效应得以证明。这里展示的全光学测量技术,对于即将到来的新一代拍瓦激光器(其最近已达到5×10²²W/cm²的强度)使用相对论性等离子体镜而言将至关重要,因此构成了通向施温格极限的一条可行实验路径。