Suppr超能文献

人工神经网络可预测后颅窝肿瘤切除术后永久性脑脊液分流的必要性。

Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection.

作者信息

Bray David P, Saad Hassan, Douglas James Miller, Grogan Dayton, Dawoud Reem A, Chow Jocelyn, Deibert Christopher, Pradilla Gustavo, Nduom Edjah K, Olson Jeffrey J, Alawieh Ali M, Hoang Kimberly B

机构信息

Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.

Emory School of Medicine, Atlanta, Georgia, USA.

出版信息

Neurooncol Adv. 2022 Sep 13;4(1):vdac145. doi: 10.1093/noajnl/vdac145. eCollection 2022 Jan-Dec.

Abstract

BACKGROUND

Resection of posterior fossa tumors (PFTs) can result in hydrocephalus that requires permanent cerebrospinal fluid (CSF) diversion. Our goal was to prospectively validate a machine-learning model to predict postoperative hydrocephalus after PFT surgery requiring permanent CSF diversion.

METHODS

We collected preoperative and postoperative variables on 518 patients that underwent PFT surgery at our center in a retrospective fashion to train several statistical classifiers to predict the need for permanent CSF diversion as a binary class. A total of 62 classifiers relevant to our data structure were surveyed, including regression models, decision trees, Bayesian models, and multilayer perceptron artificial neural networks (ANN). Models were trained using the ( = 518) retrospective data using 10-fold cross-validation to obtain accuracy metrics. Given the low incidence of our positive outcome (12%), we used the positive predictive value along with the area under the receiver operating characteristic curve (AUC) to compare models. The best performing model was then prospectively validated on a set of 90 patients.

RESULTS

Twelve percent of patients required permanent CSF diversion after PFT surgery. Of the trained models, 8 classifiers had an AUC greater than 0.5 on prospective testing. ANNs demonstrated the highest AUC of 0.902 with a positive predictive value of 83.3%. Despite comparable AUC, the remaining classifiers had a true positive rate below 35% (compared to ANN, < .0001). The negative predictive value of the ANN model was 98.8%.

CONCLUSIONS

ANN-based models can reliably predict the need for ventriculoperitoneal shunt after PFT surgery.

摘要

背景

后颅窝肿瘤(PFTs)切除可导致脑积水,这需要永久性脑脊液(CSF)分流。我们的目标是前瞻性验证一个机器学习模型,以预测PFT手术需要永久性CSF分流后的术后脑积水。

方法

我们以回顾性方式收集了在我们中心接受PFT手术的518例患者的术前和术后变量,以训练几个统计分类器,将永久性CSF分流的需求预测为二元分类。共调查了62个与我们的数据结构相关的分类器,包括回归模型、决策树、贝叶斯模型和多层感知器人工神经网络(ANN)。使用( = 518)回顾性数据,通过10倍交叉验证对模型进行训练,以获得准确性指标。鉴于我们的阳性结果发生率较低(12%),我们使用阳性预测值以及受试者操作特征曲线下面积(AUC)来比较模型。然后在一组90例患者中对表现最佳的模型进行前瞻性验证。

结果

12%的患者在PFT手术后需要永久性CSF分流。在训练的模型中,8个分类器在前瞻性测试中的AUC大于0.5。人工神经网络的AUC最高,为0.902,阳性预测值为83.3%。尽管AUC相当,但其余分类器的真阳性率低于35%(与人工神经网络相比, <.0001)。人工神经网络模型的阴性预测值为98.8%。

结论

基于人工神经网络的模型可以可靠地预测PFT手术后脑室腹腔分流的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ca/9586212/d9ed4366c84a/vdac145_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验