Suppr超能文献

杂原子掺杂在增强用于氧还原和析氧反应的单原子催化剂的催化活性及稳定性方面的作用。

Role of heteroatom-doping in enhancing catalytic activities and the stability of single-atom catalysts for oxygen reduction and oxygen evolution reactions.

作者信息

Zheng Tao, Han Xiao, Wang Jincheng, Xia Zhenhai

机构信息

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P.R. China.

Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA.

出版信息

Nanoscale. 2022 Nov 10;14(43):16286-16294. doi: 10.1039/d2nr04880a.

Abstract

Single-atom catalysts (SACs) are promising as efficient electrocatalysts for clean energy technologies such as fuel cells, water splitting, and metal-air batteries. Still, the unsatisfactory loading density and stability of the catalytic active centers limit their applications. Herein, a doping strategy is explored to achieve highly efficient and stable SACs for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The stability, electronic structures, and ORR/OER overpotentials of S-doped transition metal-nitrogen-carbon SAC structures were investigated using first-principles calculation methods. An intrinsic descriptor linking the intrinsic properties of catalysts and the catalytic activity was established for screening the best SACs. The theoretical predictions are well consistent with the experimental results, which provide a theoretical basis for understanding the catalytic mechanism and an approach for the rational design of SACs for clean energy conversion and storage.

摘要

单原子催化剂(SACs)作为用于燃料电池、水分解和金属空气电池等清洁能源技术的高效电催化剂具有广阔前景。然而,催化活性中心的负载密度和稳定性不尽人意限制了它们的应用。在此,探索了一种掺杂策略以实现用于氧还原反应(ORR)和析氧反应(OER)的高效且稳定的SACs。使用第一性原理计算方法研究了S掺杂的过渡金属氮碳SAC结构的稳定性、电子结构以及ORR/OER过电位。建立了一个将催化剂的内在性质与催化活性联系起来的本征描述符,用于筛选最佳的SACs。理论预测与实验结果高度一致,这为理解催化机理提供了理论基础,并为合理设计用于清洁能源转换和存储的SACs提供了一种方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验