文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用生物相容性聚合物制备用于文拉法辛缓释的电纺纳米纤维及其表征

Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine.

作者信息

Hashem Heba M, Motawea Amira, Kamel Ayman H, Bary E M Abdel, Hassan Saad S M

机构信息

Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

出版信息

Sci Rep. 2022 Oct 27;12(1):18037. doi: 10.1038/s41598-022-22878-7.


DOI:10.1038/s41598-022-22878-7
PMID:36302929
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9614003/
Abstract

Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC of VEN alone was 217.55 μg/mL, then VEN-NFs recorded an IC value of 250.62 μg/mL, and plain NFs showed the lowest toxicity and IC 440.48 μg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.

摘要

近年来,药物控释纳米技术在生物医学领域受到了特别关注。这项工作的重点是开发用于口腔递送文拉法辛(VEN)的新型电纺聚合物纳米纤维(NFs),以避免肝脏代谢和胃肠道中的酶降解,并实现对药物释放的有效控制。通过以1:1的比例混合聚乳酸(PLA)和聚(ε-己内酯)(PCL)获得了优化的纳米纤维。对其进行了形态学、载药量、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、差示扫描量热法(DSC)和体外药物释放表征。与VEN悬浮液相比,使用鸡嗉囊黏膜评估了共混纳米纤维的体外渗透性,随后进行了组织病理学检查。此外,使用WST-1测定法研究了在三种不同细胞系中的细胞毒性作用。扫描电子显微镜(SEM)形态学显示PLA、PCL和PLA/PCL垫的纳米纤维无缺陷且均匀。这些纤维的直径范围为200至500纳米。纳米纤维的物理热表征表明,药物成功负载在PLA/PCL纳米纤维中且呈无定形状态。纳米纤维的体外释放呈现双相特征,在最初的0.5小时内有大约30%的初始突释,随后按照非菲克扩散机制在96小时内累计释放达到80%的延长释放模式。体外渗透强调了药物持续释放的显著增强以及纳米纤维中药物渗透性的明显降低。细胞毒性数据发现,单独的VEN的半数抑制浓度(IC)为217.55微克/毫升,然后VEN-纳米纤维的IC值为250.62微克/毫升,普通纳米纤维在口腔上皮细胞(OEC)中显示出最低的毒性,IC为440.48微克/毫升。组织病理学和细胞毒性研究证明了黏膜结构的保留和临床前安全性。所开发的PLA/PCL纳米纤维有望成为药物载体,为改善精神治疗医疗带来重大变革。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/918c16b04851/41598_2022_22878_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/aa1f180b3cd7/41598_2022_22878_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/eac86bec7d61/41598_2022_22878_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/20cfdbf4a694/41598_2022_22878_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/b6e3ecd97ae4/41598_2022_22878_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/5bb4f69fef47/41598_2022_22878_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/728f6e4d5ed4/41598_2022_22878_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/09e6210ee9c4/41598_2022_22878_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/918c16b04851/41598_2022_22878_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/aa1f180b3cd7/41598_2022_22878_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/eac86bec7d61/41598_2022_22878_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/20cfdbf4a694/41598_2022_22878_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/b6e3ecd97ae4/41598_2022_22878_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/5bb4f69fef47/41598_2022_22878_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/728f6e4d5ed4/41598_2022_22878_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/09e6210ee9c4/41598_2022_22878_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/9614003/918c16b04851/41598_2022_22878_Fig8_HTML.jpg

相似文献

[1]
Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine.

Sci Rep. 2022-10-27

[2]
Improved antitumor activity through a tyramidyl maslinic acid derivative. Design and validation as drug-loaded electrospun polymeric nanofibers.

Eur J Pharm Biopharm. 2023-12

[3]
Single-Dose Electrospun Nanoparticles-in-Nanofibers Wound Dressings with Enhanced Epithelialization, Collagen Deposition, and Granulation Properties.

ACS Appl Mater Interfaces. 2016-6-1

[4]
Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.

Eur J Pharm Sci. 2016-6-10

[5]
Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device.

Biofabrication. 2013-6-25

[6]
Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system.

Int J Pharm. 2019-5-4

[7]
Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers.

Int J Biol Macromol. 2023-6-1

[8]
Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, cell studies, and anti-tumor activity.

Drug Dev Ind Pharm. 2022-12

[9]
Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy.

Nanomaterials (Basel). 2019-4-24

[10]
Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis.

Int J Nanomedicine. 2017-3-27

引用本文的文献

[1]
Aligned Electrospun PCL/PLA Nanofibers Containing Green-Synthesized CeO Nanoparticles for Enhanced Wound Healing.

Int J Mol Sci. 2025-6-25

[2]
Biological activities and phytochemical characterization of subsp. and subsp. extracts and extract-loaded nanoparticles.

Front Pharmacol. 2025-3-18

[3]
Potential of Chitosan/Gelatin-Based Nanofibers in Delivering Drugs for the Management of Varied Complications: A Review.

Polymers (Basel). 2025-2-7

[4]
Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.

3 Biotech. 2024-12

[5]
Fabrication and characterization of metformin-loaded PLGA/Collagen nanofibers for modulation of macrophage polarization for tissue engineering and regenerative medicine.

BMC Biotechnol. 2023-12-19

[6]
Electrospun Fibers Loaded with Pirfenidone: An Innovative Approach for Scar Modulation in Complex Wounds.

Polymers (Basel). 2023-10-10

[7]
Preparation of co-electrospinning membrane loaded with simvastatin and substance P to accelerate bone regeneration by promoting cell homing, angiogenesis and osteogenesis.

Mater Today Bio. 2023-6-25

[8]
Wettability of Amino Acid-Functionalized PSMA Electrospun Fibers for the Modulated Release of Active Agents and Its Effect on Their Bioactivity.

Pharmaceutics. 2023-6-5

本文引用的文献

[1]
Controlled release and antiviral activity of acyclovir-loaded PLA/PEG nanofibers produced by solution blow spinning.

Biomater Adv. 2022-5

[2]
Vitamin D/vitamin K/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway.

Int J Biol Macromol. 2021-11-1

[3]
New Oral Coaxial Nanofibers for Gadodiamide-Prospective Intestinal Magnetic Resonance Imaging and Theranostic.

Int J Nanomedicine. 2020-11-13

[4]
Overcoming the Blood-Brain Barrier: Functionalised Chitosan Nanocarriers.

Pharmaceutics. 2020-10-23

[5]
Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition.

J Drug Deliv Sci Technol. 2020-12

[6]
Enhanced Corneal Penetration of a Poorly Permeable Drug Using Bioadhesive Multiple Microemulsion Technology.

Pharmaceutics. 2020-7-26

[7]
Systemic Review of Biodegradable Nanomaterials in Nanomedicine.

Nanomaterials (Basel). 2020-4-1

[8]
Poly(ε-Caprolactone)/Poly(Lactic Acid) Blends Compatibilized by Peroxide Initiators: Comparison of Two Strategies.

Polymers (Basel). 2020-1-16

[9]
biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: plain vs. functionalized nanoparticles.

Expert Opin Drug Deliv. 2019-12-6

[10]
Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating.

Polymers (Basel). 2017-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索