Zhu Jing, Chen Xiaoyu, Zhang Lei, Wang Quan, Yang Jun, Geng Hongbo
College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Anhui, 230036, China.
School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
Dalton Trans. 2022 Nov 15;51(44):16898-16905. doi: 10.1039/d2dt03123j.
The shortage of high-capacity anode materials with long cycling stability is the main roadblock to the development of sodium-ion batteries (SIBs). The advantages of transition metal selenides are high theoretical capacity, safety and ease of design, which gradually make them potential substitute materials for the anodes of a new generation of SIBs. However, the low intrinsic conductivity of transition metal selenides and the serious powderization during charge and discharge processes restrict their rate performance and cycling stability in SIBs. Herein, bimetallic selenide ZnSe/MoSe@NC is fabricated by selenation of a rhombic dodecahedron structured metal-organic framework (MOF) containing Zn/Mo salt. Such a heterojunction and structural regulation effectively promote sodium ion transportation. Furthermore, the porous and hierarchical ZnSe/MoSe@NC is capable of adapting to the volume stress generated by sodium ion (de)insertion. Specifically, in SIB half-cell measurement, a comparable capacity of 401.8 mA h g after 100 cycles at 1 A g can be achieved by ZnSe/MoSe@NC. Additionally, the ZnSe/MoSe@NC polyhedron delivers a high capacity of 345.7 mA h g at 5 A g (1500 cycles). Electrochemical kinetics analysis is performed in detail. In SIB full battery applications, the cell shows an impressive energy density of 175.1 W h kg. This research broadens the development prospect of transition metal selenides as anodes in SIBs.
具有长循环稳定性的高容量负极材料短缺是钠离子电池(SIBs)发展的主要障碍。过渡金属硒化物的优点是理论容量高、安全性好且易于设计,这逐渐使其成为新一代SIBs负极的潜在替代材料。然而,过渡金属硒化物的本征电导率低以及充放电过程中严重的粉化现象限制了它们在SIBs中的倍率性能和循环稳定性。在此,通过对含Zn/Mo盐的菱形十二面体结构金属有机框架(MOF)进行硒化制备了双金属硒化物ZnSe/MoSe@NC。这种异质结和结构调控有效地促进了钠离子传输。此外,多孔且分级的ZnSe/MoSe@NC能够适应钠离子嵌入/脱出产生的体积应力。具体而言,在SIB半电池测试中,ZnSe/MoSe@NC在1 A g下循环100次后可实现401.8 mA h g的可比容量。此外,ZnSe/MoSe@NC多面体在5 A g(1500次循环)下具有345.7 mA h g的高容量。详细进行了电化学动力学分析。在SIB全电池应用中,该电池显示出令人印象深刻的175.1 W h kg的能量密度。这项研究拓宽了过渡金属硒化物作为SIBs负极的发展前景。