Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
Biosci Rep. 2022 Nov 30;42(11). doi: 10.1042/BSR20220892.
Currently, the benefits of immune checkpoint inhibitor (ICI) therapy prediction via emerging biomarkers have been identified, and the association between genomic mutation signatures (GMS) and immunotherapy benefits has been widely recognized as well. However, the evidence about non-small cell lung cancer (NSCLC) remains limited. We analyzed 310 immunotherapy patients with NSCLC from the Memorial Sloan Kettering Cancer Center (MSKCC) cohort. Lasso Cox regression was used to construct a GMS, and the prognostic value of GMS could be able to verify in the Rizvi cohort (N=240) and Hellmann cohort (N=75). We further conducted immunotherapy-related characteristics analysis in The Cancer Genome Atlas (TCGA) cohort (N=1052). A total of seven genes (ZFHX3, NTRK3, EPHA7, MGA, STK11, EPHA5, TP53) were identified for GMS model construction. Compared with GMS-high patients, patients with GMS-low had longer overall survival (OS; P<0.001) in the MSKCC cohort and progression-free survival (PFS; P<0.001) in the validation cohort. Multivariate Cox analysis revealed that GMS was an independent predictive factor for NSCLC patients in both the MSKCC and validation cohort. Meanwhile, we found that GMS-low patients reflected enhanced antitumor immunity in TCGA cohort. The results indicated that GMS had not only potential predictive value for the benefit of immunotherapy but also may serve as a potential biomarker to guide clinical ICI treatment decisions for NSCLC.
目前,已经确定了通过新兴生物标志物预测免疫检查点抑制剂(ICI)治疗效果的益处,并且已经广泛认识到基因组突变特征(GMS)与免疫治疗益处之间的关联。然而,关于非小细胞肺癌(NSCLC)的证据仍然有限。我们分析了来自纪念斯隆凯特琳癌症中心(MSKCC)队列的 310 名接受 NSCLC 免疫治疗的患者。使用 Lasso Cox 回归构建 GMS,并在 Rizvi 队列(N=240)和 Hellmann 队列(N=75)中验证 GMS 的预后价值。我们进一步在癌症基因组图谱(TCGA)队列(N=1052)中进行了免疫治疗相关特征分析。共鉴定出七个基因(ZFHX3、NTRK3、EPHA7、MGA、STK11、EPHA5、TP53)用于 GMS 模型构建。与 GMS-高患者相比,MSKCC 队列中 GMS-低患者的总生存期(OS;P<0.001)和验证队列中的无进展生存期(PFS;P<0.001)更长。多变量 Cox 分析表明,GMS 是 MSKCC 和验证队列中 NSCLC 患者的独立预测因素。同时,我们发现 GMS-低患者在 TCGA 队列中反映出增强的抗肿瘤免疫。结果表明,GMS 不仅具有预测免疫治疗获益的潜力,而且可能作为指导 NSCLC 临床 ICI 治疗决策的潜在生物标志物。