Suppr超能文献

多因素动态灌注指数:心脏手术相关急性肾损伤的预测工具。

The multifactorial dynamic perfusion index: A predictive tool of cardiac surgery associated acute kidney injury.

机构信息

Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy.

出版信息

Perfusion. 2024 Jan;39(1):201-209. doi: 10.1177/02676591221137033. Epub 2022 Oct 28.

Abstract

INTRODUCTION

cardiac surgery associated acute kidney injury (CSA-AKI) has a number of preoperative and intraoperative risk factors. Cardiopulmonary bypass (CPB) factors have not yet been elucidated in a single multivariate model. The aim of this study is to develop a dynamic predictive model for CSA-AKI.

METHODS

retrospective study on 910 consecutive adult cardiac surgery patients. Baseline data were used to settle a preoperative CSA-AKI risk model (static risk model, SRM); CPB related data were assessed for association with CSA-AKI. CPB duration, nadir oxygen delivery, time of exposure to a low oxygen delivery, nadir mean arterial pressure, peak lactates and red blood cell transfusion were included in a multivariate dynamic perfusion risk (DPR). SRM and DPR were merged into a final logistic regression model (multifactorial dynamic perfusion index, MDPI). The three risk models were assessed for discrimination and calibration.

RESULTS

the SRM model had an AUC of 0.696 (95% CI 0.663-0.727), the DPR model of 0.723 (95% CI 0.691-0.753), and the MDPI model an AUC of 0.769 (95% CI 0.739-0.798). The difference in AUC between SRM and DPR was not significant ( = 0.495) whereas the AUC of MDPI was significantly larger than that of SRM ( = 0.004) and DPR ( = 0.015).

CONCLUSIONS

inclusion of dynamic indices of the quality of CPB improves the discrimination and calibration of the preoperative risk scores. The MDPI has better predictive ability than the existing static risk models and is a promising tool to integrate different factors into an advanced concept of goal-directed perfusion.

摘要

简介

心脏手术相关的急性肾损伤(CSA-AKI)有许多术前和术中的危险因素。心肺转流(CPB)因素尚未在单一的多变量模型中阐明。本研究旨在建立 CSA-AKI 的动态预测模型。

方法

对 910 例连续成人心脏手术患者进行回顾性研究。使用基线数据建立术前 CSA-AKI 风险模型(静态风险模型,SRM);评估 CPB 相关数据与 CSA-AKI 的相关性。CPB 持续时间、最低氧输送、低氧输送暴露时间、最低平均动脉压、峰值乳酸和红细胞输注均纳入多变量动态灌注风险(DPR)中。SRM 和 DPR 合并到最终的逻辑回归模型(多因素动态灌注指数,MDPI)中。评估了三个风险模型的区分度和校准度。

结果

SRM 模型的 AUC 为 0.696(95%CI 0.663-0.727),DPR 模型为 0.723(95%CI 0.691-0.753),MDPI 模型的 AUC 为 0.769(95%CI 0.739-0.798)。SRM 和 DPR 之间 AUC 的差异无统计学意义( = 0.495),而 MDPI 的 AUC 明显大于 SRM( = 0.004)和 DPR( = 0.015)。

结论

CPB 质量的动态指标的纳入提高了术前风险评分的区分度和校准度。MDPI 比现有的静态风险模型具有更好的预测能力,是将不同因素整合到先进的目标导向灌注概念中的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c7f/10748450/616a47900580/10.1177_02676591221137033-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验