Suppr超能文献

统计入门:开发和验证风险预测模型。

Statistical Primer: developing and validating a risk prediction model.

机构信息

Department of Academic Surgery, University of Manchester, Manchester, UK.

Centre for Statistics in Medicine, University of Oxford, Oxford, UK.

出版信息

Eur J Cardiothorac Surg. 2018 Aug 1;54(2):203-208. doi: 10.1093/ejcts/ezy180.

Abstract

A risk prediction model is a mathematical equation that uses patient risk factor data to estimate the probability of a patient experiencing a healthcare outcome. Risk prediction models are widely studied in the cardiothoracic surgical literature with most developed using logistic regression. For a risk prediction model to be useful, it must have adequate discrimination, calibration, face validity and clinical usefulness. A basic understanding of the advantages and potential limitations of risk prediction models is vital before applying them in clinical practice. This article provides a brief overview for the clinician on the various issues to be considered when developing or validating a risk prediction model. An example of how to develop a simple model is also included.

摘要

风险预测模型是一种数学方程,它使用患者风险因素数据来估计患者经历医疗保健结果的概率。风险预测模型在心胸外科文献中得到了广泛的研究,其中大多数使用逻辑回归进行开发。为了使风险预测模型有用,它必须具有足够的判别力、校准、表面有效性和临床实用性。在将其应用于临床实践之前,基本了解风险预测模型的优点和潜在局限性至关重要。本文为临床医生提供了一个简要概述,介绍了在开发或验证风险预测模型时需要考虑的各种问题。还包括如何开发简单模型的示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验