Suppr超能文献

利用先前分类(PS1、PM5 和 PVS1 序列变异解释标准)中的结构化证据进行变异评估。

Informing variant assessment using structured evidence from prior classifications (PS1, PM5, and PVS1 sequence variant interpretation criteria).

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA.

出版信息

Genet Med. 2023 Jan;25(1):16-26. doi: 10.1016/j.gim.2022.09.009. Epub 2022 Oct 28.

Abstract

PURPOSE

This study aimed to explore whether evidence of pathogenicity from prior variant classifications in ClinVar could be used to inform variant interpretation using the American College of Medical Genetics and Genomics/Association for Molecular Pathology clinical guidelines.

METHODS

We identified distinct single-nucleotide variants (SNVs) that are either similar in location or in functional consequence to pathogenic variants in ClinVar and analyzed evidence in support of pathogenicity using 3 interpretation criteria.

RESULTS

Thousands of variants, including many in clinically actionable disease genes (American College of Medical Genetics and Genomics secondary findings v3.0), have evidence of pathogenicity from existing variant classifications, accounting for 2.5% of nonsynonymous SNVs within ClinVar. Notably, there are many variants with uncertain or conflicting classifications that cause the same amino acid substitution as other pathogenic variants (PS1, N = 323), variants that are predicted to cause different amino acid substitutions in the same codon as pathogenic variants (PM5, N = 7692), and loss-of-function variants that are present in genes in which many loss-of-function variants are classified as pathogenic (PVS1, N = 3635). Most of these variants have similar computational predictions of pathogenicity and splicing effect as their associated pathogenic variants.

CONCLUSION

Broadly, for >1.4 million SNVs exome wide, information from previously classified variants could be used to provide evidence of pathogenicity. We have developed a pipeline to identify variants meeting these criteria that may inform interpretation efforts.

摘要

目的

本研究旨在探讨先前 ClinVar 变异分类中的致病性证据是否可用于根据美国医学遗传学与基因组学学会/分子病理学协会临床指南来解释变异。

方法

我们确定了 ClinVar 中致病性变异在位置或功能后果上相似的独特单核苷酸变异(SNV),并使用 3 种解释标准分析支持致病性的证据。

结果

数千种变异,包括许多在临床可操作性疾病基因(美国医学遗传学与基因组学学会二级发现 v3.0)中,具有来自现有变异分类的致病性证据,占 ClinVar 中非同义 SNV 的 2.5%。值得注意的是,有许多具有不确定或冲突分类的变异,其导致与其他致病性变异相同的氨基酸取代(PS1,N=323),在与致病性变异相同的密码子中预测会导致不同氨基酸取代的变异(PM5,N=7692),以及在许多失活变异被归类为致病性的基因中存在的失活变异(PVS1,N=3635)。这些变异中的大多数具有与其相关致病性变异相似的致病性和剪接效应的计算预测。

结论

总体而言,对于外显子组范围内的>140 万个 SNV,先前分类的变异信息可用于提供致病性证据。我们已经开发了一种识别符合这些标准的变异的管道,这些变异可能有助于解释工作。

相似文献

5
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium.
Am J Hum Genet. 2016 Jun 2;98(6):1067-1076. doi: 10.1016/j.ajhg.2016.03.024. Epub 2016 May 12.
6
[The updates of the ACMG variant interpretation guidelines affect the pathogenicity determination of gene variations in patients with auditory neuropathy].
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2024 May 7;59(5):455-463. doi: 10.3760/cma.j.cn115330-20231129-00254.
7
Evaluating ClinGen variant curation expert panels' application of PVS1 code.
Eur J Med Genet. 2024 Feb;67:104909. doi: 10.1016/j.ejmg.2024.104909. Epub 2024 Jan 8.
8
DNA variant classification-reconsidering "allele rarity" and "phenotype" criteria in ACMG/AMP guidelines.
Eur J Med Genet. 2021 Oct;64(10):104312. doi: 10.1016/j.ejmg.2021.104312. Epub 2021 Aug 16.
9
Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss.
Genet Med. 2021 Nov;23(11):2208-2212. doi: 10.1038/s41436-021-01254-2. Epub 2021 Jul 6.

引用本文的文献

1
Extracting and calibrating evidence of variant pathogenicity from population biobank data.
Am J Hum Genet. 2025 Jul 4. doi: 10.1016/j.ajhg.2025.06.012.
2
The recommendation of re-classification of variants of uncertain significance (VUS) in adult genetic disorders patients.
J Hum Genet. 2024 Sep;69(9):425-431. doi: 10.1038/s10038-024-01263-4. Epub 2024 Jun 6.

本文引用的文献

4
Strategic vision for improving human health at The Forefront of Genomics.
Nature. 2020 Oct;586(7831):683-692. doi: 10.1038/s41586-020-2817-4. Epub 2020 Oct 28.
5
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
7
Is 'likely pathogenic' really 90% likely? Reclassification data in ClinVar.
Genome Med. 2019 Nov 21;11(1):72. doi: 10.1186/s13073-019-0688-9.
8
Overview of Specifications to the ACMG/AMP Variant Interpretation Guidelines.
Curr Protoc Hum Genet. 2019 Sep;103(1):e93. doi: 10.1002/cphg.93.
9
Predicting Splicing from Primary Sequence with Deep Learning.
Cell. 2019 Jan 24;176(3):535-548.e24. doi: 10.1016/j.cell.2018.12.015. Epub 2019 Jan 17.
10
CADD: predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894. doi: 10.1093/nar/gky1016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验