文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 scPipeline 对单细胞转录组进行多层次细胞和功能注释。

Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline.

机构信息

Donnelly Centre, University of Toronto, Toronto, ON, Canada.

Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.

出版信息

Commun Biol. 2022 Oct 28;5(1):1142. doi: 10.1038/s42003-022-04093-2.


DOI:10.1038/s42003-022-04093-2
PMID:36307536
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9616830/
Abstract

Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both unsupervised and supervised procedures were validated using a diverse collection of scRNA-seq datasets and illustrative examples of cellular transcriptomic annotation of developmental and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flexible computational framework for in-depth scRNA-seq analysis.

摘要

单细胞 RNA 测序 (scRNA-seq) 为复杂生物学提供了功能见解,允许在单细胞分辨率下检测细胞群体和基因表达程序。在这里,我们介绍了 scPipeline,这是一个单细胞数据分析工具包,它建立在现有方法的基础上,并提供了用于多层次细胞注释和用户友好的分析报告的模块化工作流程。scRNA-seq 注释的进展包括:(i)基于共依赖指数 (CDI) 的差异表达,(ii)使用标记特异性标准优化聚类分辨率,(iii)基于标记的细胞类型注释与 Miko 评分,以及 (iv)使用无标度共享最近邻网络 (SSN) 分析发现基因程序。使用各种 scRNA-seq 数据集验证了无监督和有监督程序,并提供了发育和免疫 scRNA-seq 图谱的细胞转录组注释的说明性示例。总体而言,scPipeline 为深入的 scRNA-seq 分析提供了一个灵活的计算框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/72262a3caff8/42003_2022_4093_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/2ca2ab80cc80/42003_2022_4093_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/0558c824261f/42003_2022_4093_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/6d8709a43b31/42003_2022_4093_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/ce50cf2d7c9b/42003_2022_4093_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/72262a3caff8/42003_2022_4093_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/2ca2ab80cc80/42003_2022_4093_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/0558c824261f/42003_2022_4093_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/6d8709a43b31/42003_2022_4093_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/ce50cf2d7c9b/42003_2022_4093_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/9616830/72262a3caff8/42003_2022_4093_Fig5_HTML.jpg

相似文献

[1]
Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline.

Commun Biol. 2022-10-28

[2]
scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.

Brief Bioinform. 2024-5-23

[3]
Data Analysis in Single-Cell Transcriptome Sequencing.

Methods Mol Biol. 2018

[4]
Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data.

Biomolecules. 2022-10-21

[5]
An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.

F1000Res. 2018-8-16

[6]
Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.

Genes (Basel). 2020-7-14

[7]
scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.

Brief Bioinform. 2023-3-19

[8]
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.

Bioinformatics. 2018-1-1

[9]
scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.

Brief Bioinform. 2023-5-19

[10]
Scanorama: integrating large and diverse single-cell transcriptomic datasets.

Nat Protoc. 2024-8

引用本文的文献

[1]
Mapping Cell Identity from scRNA-seq: A primer on computational methods.

Comput Struct Biotechnol J. 2025-4-2

[2]
Functional profiling of murine glioma models highlights targetable immune evasion phenotypes.

Acta Neuropathol. 2024-11-27

[3]
A self-training interpretable cell type annotation framework using specific marker gene.

Bioinformatics. 2024-10-1

[4]
Delving deeper into the mechanisms fundamental to HIV-associated immunopathology using single-cell sequencing techniques: A scoping review of current literature.

Heliyon. 2024-8-6

[5]
Single-nucleus atlas of the Artemia female reproductive system suggests germline repression of the Z chromosome.

PLoS Genet. 2024-8

[6]
CD200 fibroblasts form a pro-resolving mesenchymal network in arthritis.

Nat Immunol. 2024-4

[7]
CAP-RNAseq: an integrated pipeline for functional annotation and prioritization of co-expression clusters.

Brief Bioinform. 2024-1-22

[8]
The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers.

Acta Neuropathol. 2022-12

本文引用的文献

[1]
Review of single-cell RNA-seq data clustering for cell-type identification and characterization.

RNA. 2023-5

[2]
SingleCAnalyzer: Interactive Analysis of Single Cell RNA-Seq Data on the Cloud.

Front Bioinform. 2022-5-23

[3]
Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis.

Mol Cell. 2022-8-18

[4]
The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans.

Science. 2022-5-13

[5]
ICARUS, an interactive web server for single cell RNA-seq analysis.

Nucleic Acids Res. 2022-7-5

[6]
Interactive single-cell data analysis using Cellar.

Nat Commun. 2022-4-14

[7]
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data.

Nat Commun. 2022-3-10

[8]
Single-cell transcriptomic characterization of a gastrulating human embryo.

Nature. 2021-12

[9]
Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape.

Genome Biol. 2021-10-29

[10]
Differential abundance testing on single-cell data using k-nearest neighbor graphs.

Nat Biotechnol. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索