Donnelly Centre, University of Toronto, Toronto, ON, Canada.
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Commun Biol. 2022 Oct 28;5(1):1142. doi: 10.1038/s42003-022-04093-2.
Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both unsupervised and supervised procedures were validated using a diverse collection of scRNA-seq datasets and illustrative examples of cellular transcriptomic annotation of developmental and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flexible computational framework for in-depth scRNA-seq analysis.
单细胞 RNA 测序 (scRNA-seq) 为复杂生物学提供了功能见解,允许在单细胞分辨率下检测细胞群体和基因表达程序。在这里,我们介绍了 scPipeline,这是一个单细胞数据分析工具包,它建立在现有方法的基础上,并提供了用于多层次细胞注释和用户友好的分析报告的模块化工作流程。scRNA-seq 注释的进展包括:(i)基于共依赖指数 (CDI) 的差异表达,(ii)使用标记特异性标准优化聚类分辨率,(iii)基于标记的细胞类型注释与 Miko 评分,以及 (iv)使用无标度共享最近邻网络 (SSN) 分析发现基因程序。使用各种 scRNA-seq 数据集验证了无监督和有监督程序,并提供了发育和免疫 scRNA-seq 图谱的细胞转录组注释的说明性示例。总体而言,scPipeline 为深入的 scRNA-seq 分析提供了一个灵活的计算框架。
Methods Mol Biol. 2018
Biomolecules. 2022-10-21
Brief Bioinform. 2023-3-19
Bioinformatics. 2018-1-1
Comput Struct Biotechnol J. 2025-4-2
Acta Neuropathol. 2024-11-27
Bioinformatics. 2024-10-1
Nat Immunol. 2024-4
Front Bioinform. 2022-5-23
Nucleic Acids Res. 2022-7-5
Nat Commun. 2022-4-14
Genome Biol. 2021-10-29
Nat Biotechnol. 2022-2