Samani Saeideh, Vadiati Meysam, Nejatijahromi Zohre, Etebari Behrooz, Kisi Ozgur
Department of Water Resources Study and Research, Water Research Institute (WRI), Tehran Province, District 4, Bahar Blvd, Tehran, Iran.
Global Affairs, Hubert H. Humphrey Fellowship Program, University of California, 10 College Park, Davis, CA, 95616, USA.
Environ Sci Pollut Res Int. 2023 Feb;30(9):22863-22884. doi: 10.1007/s11356-022-23686-2. Epub 2022 Oct 29.
Due to its heterogeneous and complex nature, groundwater modeling needs great effort to quantify the aquifer, a crucial tool for policymakers and hydrogeologists to understand the variations in groundwater levels (GWL). This study proposed a set of supervised machine learning (ML) models to delineate the GWL changes in the Zarand-Saveh complex aquifer in Iran using 15-year (2005-2020) monthly dataset. The wavelet transform (WT) procedure was also used to improve the GWL prediction ability of ML models for 3-month horizons using input datasets of precipitation, evapotranspiration, temperature, and GWL. The four well-accepted standalone ML methods, i.e., artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), group method of data handling (GMDH), and least square support vector machine (LSSVM), were implemented and compared with the hybrid wavelet conjunction models. The methods were compared based on root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), and Nash-Sutcliffe efficiency (NSE). Comparison outcomes showed that the hybrid wavelet-ML considerably improved the standalone model results. The wavelet transform-least square support vector machine (WT-LSSVM) model was superior to other standalone and hybrid wavelet-ML methods to predict GWL. The best GWL predictions were acquired from the WT-LSSVM model with input scenario 5 involving all influential variables, and this model produced RMSE, MAE, R, and NSE as 0.05, 0.04, 0.99, and 0.99 for 1 month ahead of GWL prediction, while the corresponding values were obtained as 0.18, 0.14, 0.95, and 0.90 for 3 months ahead of GWL prediction, respectively.
由于其性质的异质性和复杂性,地下水建模需要付出巨大努力来量化含水层,这是政策制定者和水文地质学家了解地下水位(GWL)变化的关键工具。本研究提出了一组监督式机器学习(ML)模型,以利用15年(2005 - 2020年)的月度数据集描绘伊朗Zarand - Saveh复合含水层的GWL变化。还使用小波变换(WT)程序,利用降水、蒸发散、温度和GWL的输入数据集,提高ML模型对3个月时间范围的GWL预测能力。实施了四种广泛认可的独立ML方法,即人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)、数据处理分组方法(GMDH)和最小二乘支持向量机(LSSVM),并与混合小波结合模型进行比较。基于均方根误差(RMSE)、平均绝对误差(MAE)、相关系数(R)和纳什 - 萨特克利夫效率(NSE)对这些方法进行比较。比较结果表明,混合小波 - ML大大改善了独立模型的结果。小波变换 - 最小二乘支持向量机(WT - LSSVM)模型在预测GWL方面优于其他独立和混合小波 - ML方法。从WT - LSSVM模型在输入情景5(涉及所有影响变量)下获得了最佳的GWL预测,该模型在GWL预测提前1个月时产生的RMSE、MAE、R和NSE分别为0.05、0.04、0.99和0.99,而在GWL预测提前3个月时,相应的值分别为0.18、0.14、0.95和0.90。