公众对全球猴痘疫情的看法:对 352182 条推特帖子的无监督机器学习分析。
Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts.
机构信息
Health Services Research Unit, Singapore General Hospital, Singapore 168582, Singapore.
NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
出版信息
Public Health. 2022 Dec;213:1-4. doi: 10.1016/j.puhe.2022.09.008. Epub 2022 Oct 26.
OBJECTIVES
This study aimed to study the public's sentiments on the current monkeypox outbreaks via an unsupervised machine learning analysis of social media posts.
STUDY DESIGN
This was an exploratory analysis of tweets sentiments.
METHODS
We extracted original tweets containing the terms 'monkeypox', 'monkey pox' or 'monkey_pox' and posted them in the English language from 6 May 2022 (first case detected in the United Kingdom) to 23 July 2022 (when World Health Organization declared Monkeypox to be a global health emergency). Retweets and duplicate tweets were excluded from study. Bidirectional Encoder Representations from Transformers (BERT) Named Entity Recognition. This was followed by topic modelling (specifically BERTopic) and manual thematic analysis by the study team, with independent reviews of the topic labels and themes.
RESULTS
Based on topic modelling and thematic analysis of a total of 352,182 Twitter posts, we derived five topics clustered into three major themes related to the public discourse on the ongoing outbreaks. These include concerns of safety, stigmatisation of minority communities, and a general lack of faith in public institutions. The public sentiments underscore growing (and existing) partisanship, personal health worries in relation to the evolving situation, as well as concerns of the media's portrayal of lesbian, gay, bisexual, transgender and queer and minority communities, which might further stigmatise these groups.
CONCLUSIONS
Monkeypox is an emerging infectious disease of public concern. Our study has highlighted important societal issues, including misinformation, political mistrust and anti-gay stigma that should be sensitively considered when designing public health policies to contain the ongoing outbreaks.
目的
通过对社交媒体帖子的无监督机器学习分析,研究公众对当前猴痘疫情的情绪。
研究设计
这是对推文情绪的探索性分析。
方法
我们从 2022 年 5 月 6 日(英国首次发现病例)到 2022 年 7 月 23 日(世界卫生组织宣布猴痘为全球卫生紧急事件)期间提取了包含术语“猴痘”、“猴痘”或“猴痘”的原始推文,并以英文发布。转推和重复推文被排除在研究之外。使用来自 Transformer 的双向编码器表示(Bidirectional Encoder Representations from Transformers,BERT)命名实体识别。然后进行主题建模(特别是 BERTopic)和研究团队的手动主题分析,并对主题标签和主题进行独立审查。
结果
基于对总共 352182 条 Twitter 帖子的主题建模和主题分析,我们得出了五个主题,分为与公众对正在进行的疫情的讨论相关的三个主要主题。这些主题包括对安全的担忧、少数族裔社区的污名化以及对公共机构普遍缺乏信任。公众情绪突显了日益加剧(和现有的)党派偏见、与不断变化的情况有关的个人健康担忧,以及对媒体对女同性恋、男同性恋、双性恋、跨性别和酷儿以及少数族裔社区的描述的关注,这可能进一步污名化这些群体。
结论
猴痘是一种引起公众关注的新发传染病。我们的研究强调了一些重要的社会问题,包括错误信息、政治不信任和反同性恋污名,在制定公共卫生政策以遏制正在进行的疫情时,应敏感地考虑这些问题。