Suppr超能文献

关于机器学习技术在猴痘疾病预测中的应用综述。

A review on the use of machine learning techniques in monkeypox disease prediction.

作者信息

Rampogu Shailima

机构信息

Cachet Big Data Lab, Hyderabad, 500045, Telangana, India.

出版信息

Sci One Health. 2023 Sep 23;2:100040. doi: 10.1016/j.soh.2023.100040. eCollection 2023.

Abstract

Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms for monkeypox (MP). Various models, such as CNN, DL, NLP, Naïve Bayes, GRA-TLA, HMD, ARIMA, SEL, Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this review will assist researchers in understanding the latest implementations of ML in MP and further progress in the field to discover potent therapeutics.

摘要

传染病最近已构成全球威胁,从地方性疾病发展为大流行病。早期检测和找到更好的治疗方法是控制疾病及其传播的手段。机器学习(ML)已被证明是早期疾病诊断的理想方法。本综述重点介绍了ML算法在猴痘(MP)中的应用。构建了各种模型,如卷积神经网络(CNN)、深度学习(DL)、自然语言处理(NLP)、朴素贝叶斯、灰色关联分析-树状层次分析法(GRA-TLA)、热图绘制(HMD)、自回归积分移动平均模型(ARIMA)、选择算法(SEL)、回归分析以及推特帖子,以从数据集中提取有用信息。这些研究结果表明,主要分析了检测、分类、预测和情感分析。此外,本综述将帮助研究人员了解ML在MP中的最新应用以及该领域的进一步进展,以发现有效的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49df/11262284/1c232b9471aa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验