Back Yannick, Kumar Prashant, Bach Peter M, Rauch Wolfgang, Kleidorfer Manfred
Unit of Environmental Engineering, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria.
Unit of Environmental Engineering, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria.
Sci Total Environ. 2023 Feb 1;858(Pt 1):159729. doi: 10.1016/j.scitotenv.2022.159729. Epub 2022 Oct 26.
Constant urban growth exacerbates the demand for residential, commercial and traffic areas, leading to progressive surface sealing and urban densification. With climate change altering precipitation and temperature patterns worldwide, cities are exposed to multiple risks, demanding holistic and anticipatory urban planning strategies and adaptive measures that are multi-beneficial. Sustainable urban planning requires comprehensive tools that account for different aspects and boundary conditions and are capable of mapping and assessing crucial processes of land-atmosphere interactions and the impacts of adaptation measures on the urban climate system. Here, we combine Computational Fluid Dynamics (CFD) and Geographic Information System (GIS) capabilities to refine an existing 2D urban micro- and bioclimatic modelling approach. In particular, we account for the vertical and horizontal variability in wind speed and air temperature patterns in the urban canopy layer. Our results highlight the importance of variability of these patterns in analysing urban heat development, intensity and thermal comfort at multiple heights from the ground surface. Neglecting vertical and horizontal variability, non-integrated CFD modelling underestimates mean land surface temperature by 7.8 °C and the Universal Thermal Climate Index by 6.9 °C compared to CFD-integrated modelling. Due to the strong implications of wind and air temperature patterns on the relationship between surface temperature and human thermal comfort, we urge caution when relying on studies solely based on surface temperatures for urban heat assessment and hot spot analysis as this could lead to misinterpretations of hot and cool spots in cities and, thus, mask the anticipated effects of adaptation measures. The integrated CFD-GIS modelling approach, which we demonstrate, improves urban climate studies and supports more comprehensive assessments of urban heat and human thermal comfort to sustainably develop resilient cities.
城市的持续扩张加剧了对住宅、商业和交通区域的需求,导致地表逐渐被硬化且城市密度不断增加。随着气候变化改变全球的降水和温度模式,城市面临多种风险,这就需要全面且具有前瞻性的城市规划策略以及具有多重效益的适应性措施。可持续城市规划需要综合工具,这些工具要考虑到不同方面和边界条件,并且能够绘制和评估陆地 - 大气相互作用的关键过程以及适应措施对城市气候系统的影响。在此,我们结合计算流体动力学(CFD)和地理信息系统(GIS)的功能,对现有的二维城市微气候和生物气候建模方法进行优化。特别是,我们考虑了城市冠层中风速和气温模式的垂直和水平变化。我们的结果突出了这些模式变化在分析距地面不同高度处的城市热发展、强度和热舒适度方面的重要性。与整合CFD的建模相比,忽略垂直和水平变化的非整合CFD建模会使平均地表温度低估7.8°C,通用热气候指数低估6.9°C。由于风和气温模式对地表温度与人体热舒适度之间的关系有重大影响,我们敦促在仅基于地表温度进行城市热评估和热点分析的研究时要谨慎,因为这可能导致对城市中热点和冷点的误解,从而掩盖适应措施的预期效果。我们所展示的CFD - GIS整合建模方法改进了城市气候研究,并支持对城市热和人体热舒适度进行更全面的评估,以可持续地发展具有韧性的城市。