Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
Food Microbiol. 2023 Feb;109:104119. doi: 10.1016/j.fm.2022.104119. Epub 2022 Aug 20.
Photocatalysts, including titanium dioxide (TiO), have attracted much attention in food safety for controlling foodborne pathogens. However, the study of the photocatalytic activity on various food-surrounding media and the factors that affect the efficacy of photocatalytic inactivation is incomplete. In this study, to inactivate foodborne pathogens in food-surrounding environments, TiO-based photocatalysts with ultraviolet A (UVA, 365 nm) and visible light (VIS, 405 nm) were employed. Three TiO-based photocatalysts, namely, Degussa P25 TiO, carbon-modified KRONOClean 7000® (C-TiO), and Pt-doped Ishihara-Sangyo MPT-623 (Pt-TiO) inactivated Staphylococcus aureus and Escherichia coli O157:H7 exposed to UVA and VIS light in both water and air samples. Among them, Degussa P25 under UVA showed the highest bactericidal effects in both water and air treatments, which induced 5.19 log reductions in S. aureus when treated for 11.68 J/cm2, and E. coli O157:H7 was reduced by more than 6.21 log for 1.32 J/cm in the water sample. For air treatment, the combination of Degussa P25 and UVA achieved 3.45 and 3.28 log reductions for Staphylococcus aureus and E. coli O157:H7, respectively, in a developed laboratory-scale chamber for 1 h and 20.02 J/cm. Scavenger assays showed that regardless of the photocatalyst and wavelength used, reactive oxygen species (ROS) generation causes cell membrane disruption of foodborne pathogens. However, the types of ROS that are generated vary among the photocatalysts and are related to different bactericidal efficacies. These results indicated that TiO-based photocatalytic activity can be used to control microbiological hazards in various environments in the food industry.
光催化剂,包括二氧化钛(TiO),在食品安全领域因其对食源性病原体的控制作用而备受关注。然而,关于其在各种食品环境介质中的光催化活性以及影响光催化灭活效果的因素的研究并不完善。在本研究中,为了在食品环境中灭活食源性病原体,使用了基于 TiO 的光催化剂,其激发光源分别为紫外线 A(UVA,365nm)和可见光(VIS,405nm)。三种基于 TiO 的光催化剂,即 Degussa P25 TiO、碳改性 KRONOClean 7000®(C-TiO)和 Pt 掺杂 Ishihara-Sangyo MPT-623(Pt-TiO),在水和空气中的 UVA 和 VIS 光照射下均可灭活金黄色葡萄球菌和大肠杆菌 O157:H7。其中,Degussa P25 在水和空气处理中均表现出最高的杀菌效果,在 11.68J/cm2 的处理下,其对金黄色葡萄球菌的杀菌率达到 5.19log,在水样中,大肠杆菌 O157:H7 的减少量超过 6.21log,达到 1.32J/cm。对于空气处理,Degussa P25 和 UVA 的组合在开发的实验室规模腔室中运行 1 小时和 20.02J/cm 时,可分别使金黄色葡萄球菌和大肠杆菌 O157:H7 的减少量达到 3.45 和 3.28log。清除剂实验表明,无论使用哪种光催化剂和波长,活性氧物质(ROS)的产生都会导致食源性病原体细胞膜破裂。然而,在不同的光催化剂之间产生的 ROS 类型不同,这与不同的杀菌效果有关。这些结果表明,基于 TiO 的光催化活性可用于控制食品工业中各种环境中的微生物危害。