Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Molecules. 2023 Jan 26;28(3):1199. doi: 10.3390/molecules28031199.
Photocatalytic inactivation of pathogens in aqueous waste is gaining increasing attention. Several homogeneous and heterogeneous photocatalytic protocols exist using the Fenton's reagent and TiO, respectively. A comprehensive study of homogeneous and heterogeneous photocatalysis on a range of microorganisms will significantly establish the most efficient method. Here, we report a comparative study of TiO- and Fe-based photocatalytic inactivation under UV-A of diverse microorganisms, including Gram-positive () and Gram-negative () bacteria, bacterial spores ( spores) and viruses (MS2). We also present data on the optimization of TiO photocatalysis, including optimal catalyst concentration and HO supplementation. Our results indicate that both photo-Fenton and TiO could be successfully applied for the management of microbial loads in liquids. Efficient microorganism inactivation is achieved with homogeneous photocatalysis (7 mg/L Fe, 100 mg/L HO, UV-A) in a shorter processing time compared to heterogeneous photocatalysis (0.5 g/L TiO, UV-A), whereas similar or shorter processing is required when heterogenous photocatalysis is performed using microorganism-specific optimized TiO concentrations and HO supplementation (100 mg/L); higher HO concentrations further enhance the heterogenous photocatalytic inactivation efficiency. Our study provides a template protocol for the design and further application for large-scale photocatalytic approaches to inactivate pathogens in liquid biomedical waste.
光催化技术在处理水中病原体方面受到越来越多的关注。目前已经有多种均相和多相光催化方法被开发出来,分别使用芬顿试剂和 TiO2。对一系列微生物的均相和多相光催化进行全面研究将显著确定最有效的方法。在这里,我们报告了 TiO2 和基于 Fe 的光催化在 UV-A 下对多种微生物(包括革兰氏阳性菌和革兰氏阴性菌、细菌孢子和病毒 MS2)的灭活效果的比较研究。我们还提供了优化 TiO2 光催化的相关数据,包括最佳催化剂浓度和 HO 补充。我们的结果表明,光芬顿和 TiO2 都可成功应用于液体中微生物负荷的管理。与多相光催化(0.5 g/L TiO2,UV-A)相比,均相光催化(7 mg/L Fe,100 mg/L HO,UV-A)在更短的处理时间内实现了更高的微生物灭活效率,而当使用针对特定微生物的优化 TiO2 浓度和 HO 补充进行多相光催化时,所需的处理时间相似或更短(100 mg/L HO);更高的 HO 浓度进一步提高了多相光催化的灭活效率。我们的研究为设计和进一步应用大规模光催化方法灭活液体生物医学废水中的病原体提供了模板协议。