Suppr超能文献

基于全血细胞计数的多元模型预测中度 COVID-19 患者的康复:一项回顾性研究。

A complete blood count-based multivariate model for predicting the recovery of patients with moderate COVID-19: a retrospective study.

机构信息

Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.

Department of Pediatrics, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.

出版信息

Sci Rep. 2022 Oct 29;12(1):18262. doi: 10.1038/s41598-022-23285-8.

Abstract

Many resource-limited countries need an efficient and convenient method to assess disease progression in patients with coronavirus disease 2019 (COVID-19). This study developed and validated a complete blood count-based multivariate model for predicting the recovery of patients with moderate COVID-19. We collected the clinical data and laboratory test results of 86 patients with moderate COVID-19. These data were categorized into two subgroups depending on the laboratory test time. Univariate logistic regression and covariance diagnosis were used to screen for independent factors, and multifactorial logistic regression was used for model building. Data from 38 patients at another hospital were collected for external verification of the model. Basophils (OR 6.372; 95% CI 3.284-12.363), mean corpuscular volume (OR 1.244; 95% CI 1.088-1.422), red blood cell distribution width (OR 2.585; 95% CI 1.261-5.297), and platelet distribution width (OR 1.559; 95% CI 1.154-2.108) could be combined to predict recovery of patients with moderate COVID-19. The ROC curve showed that the model has good discrimination. The calibration curve showed that the model was well-fitted. The DCA showed that the model is clinically useful. Small increases in the above parameters within the normal range suggest an improvement in patients with moderate COVID-19.

摘要

许多资源有限的国家需要一种高效便捷的方法来评估 2019 冠状病毒病(COVID-19)患者的疾病进展。本研究开发并验证了一种基于全血细胞计数的多变量模型,用于预测中度 COVID-19 患者的康复情况。我们收集了 86 例中度 COVID-19 患者的临床数据和实验室检测结果。这些数据根据实验室检测时间分为两组。采用单因素逻辑回归和协方差诊断筛选独立因素,采用多因素逻辑回归进行模型构建。另外一家医院的 38 例患者的数据用于模型的外部验证。嗜碱性粒细胞(OR 6.372;95%CI 3.284-12.363)、平均红细胞体积(OR 1.244;95%CI 1.088-1.422)、红细胞分布宽度(OR 2.585;95%CI 1.261-5.297)和血小板分布宽度(OR 1.559;95%CI 1.154-2.108)可联合预测中度 COVID-19 患者的康复情况。ROC 曲线显示该模型具有良好的区分度。校准曲线显示模型拟合良好。DCA 显示该模型具有临床实用性。上述参数在正常范围内的微小增加表明中度 COVID-19 患者的病情有所改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00e/9617916/43475bc2a0fa/41598_2022_23285_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验