Suppr超能文献

基于全局交叉变异和帐篷映射的哈里斯鹰优化算法

Harris hawks optimization based on global cross-variation and tent mapping.

作者信息

Chen Lei, Song Na, Ma Yunpeng

机构信息

School of Information Engineering, Tianjin University of Commerce, Beichen District, Tianjin, 300134 China.

School of Science, Tianjin University of Commerce, Beichen District, Tianjin, 300134 China.

出版信息

J Supercomput. 2023;79(5):5576-5614. doi: 10.1007/s11227-022-04869-7. Epub 2022 Oct 25.

Abstract

Harris hawks optimization (HHO) is a new meta-heuristic algorithm that builds a model by imitating the predation process of Harris hawks. In order to solve the problems of poor convergence speed caused by uniform choice position update formula in the exploration stage of basic HHO and falling into local optimization caused by insufficient population richness in the later stage of the algorithm, a Harris hawks optimization based on global cross-variation and tent mapping (CRTHHO) is proposed in this paper. Firstly, the tent mapping is introduced in the exploration stage to optimize random parameter q to speed up the convergence in the early stage. Secondly, the crossover mutation operator is introduced to cross and mutate the global optimal position in each iteration process. The greedy strategy is used to select, which prevents the algorithm from falling into local optimal because of skipping the optimal solution and improves the convergence accuracy of the algorithm. In order to investigate the performance of CRTHHO, experiments are carried out on ten benchmark functions and the CEC2017 test set. Experimental results show that the CRTHHO algorithm performs better than the HHO algorithm and is competitive with five advanced meta-heuristic algorithms.

摘要

哈里斯鹰优化算法(HHO)是一种新的元启发式算法,它通过模仿哈里斯鹰的捕食过程来构建模型。为了解决基本哈里斯鹰优化算法在探索阶段因位置更新公式选择单一导致收敛速度慢以及算法后期种群丰富度不足而陷入局部最优的问题,本文提出了一种基于全局交叉变异和帐篷映射的哈里斯鹰优化算法(CRTHHO)。首先,在探索阶段引入帐篷映射来优化随机参数q,以加快算法前期收敛速度。其次,引入交叉变异算子,在每次迭代过程中对全局最优位置进行交叉变异。采用贪婪策略进行选择,避免算法因跳过最优解而陷入局部最优,提高了算法的收敛精度。为了研究CRTHHO的性能,在十个基准函数和CEC2017测试集上进行了实验。实验结果表明,CRTHHO算法的性能优于HHO算法,并且与五种先进的元启发式算法具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0163/9595096/ad709c152026/11227_2022_4869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验