Suppr超能文献

一种用于风力发电机组函数优化和故障诊断的速度引导型 Harris 鹰优化算法。

A velocity-guided Harris hawks optimizer for function optimization and fault diagnosis of wind turbine.

作者信息

Long Wen, Jiao Jianjun, Liang Ximing, Xu Ming, Wu Tiebin, Tang Mingzhu, Cai Shaohong

机构信息

Guizhou Key Laboratory of Big Data Statistical, Guizhou University of Finance and Economics, Guiyang, 550025 China.

Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang, 550025 China.

出版信息

Artif Intell Rev. 2023;56(3):2563-2605. doi: 10.1007/s10462-022-10233-1. Epub 2022 Jul 25.

Abstract

Harris hawks optimizer (HHO) is a relatively novel meta-heuristic approach that mimics the behavior of Harris hawk over the process of predating the rabbits. The simplicity and easy implementation of HHO have attracted extensive attention of many researchers. However, owing to its capability to balance between exploration and exploitation is weak, HHO suffers from low precision and premature convergence. To tackle these disadvantages, an improved HHO called VGHHO is proposed by embedding three modifications. Firstly, a novel modified position search equation in exploitation phase is designed by introducing velocity operator and inertia weight to guide the search process. Then, a nonlinear escaping energy parameter based on cosine function is presented to achieve a good transition from exploration phase to exploitation phase. Thereafter, a refraction-opposition-based learning mechanism is introduced to generate the promising solutions and helps the swarm to flee from the local optimal solution. The performance of VGHHO is evaluated on 18 classic benchmarks, 30 latest benchmark tests from CEC2017, 21 benchmark feature selection problems, fault diagnosis problem of wind turbine and PV model parameter estimation problem, respectively. The simulation results indicate that VHHO has higher solution quality and faster convergence speed than basic HHO and some well-known algorithms in the literature on most of the benchmark and real-world problems.

摘要

哈里斯鹰优化器(HHO)是一种相对新颖的元启发式方法,它模仿了哈里斯鹰在捕食兔子过程中的行为。HHO的简单性和易于实现吸引了众多研究人员的广泛关注。然而,由于其在探索和利用之间的平衡能力较弱,HHO存在精度低和早熟收敛的问题。为了解决这些缺点,通过嵌入三种改进提出了一种改进的HHO,称为VGHHO。首先,在利用阶段设计了一种新颖的改进位置搜索方程,通过引入速度算子和惯性权重来引导搜索过程。然后,提出了一种基于余弦函数的非线性逃逸能量参数,以实现从探索阶段到利用阶段的良好过渡。此后,引入了一种基于折射-对立的学习机制来生成有前途的解,并帮助群体逃离局部最优解。分别在18个经典基准测试、CEC2017的30个最新基准测试、21个基准特征选择问题、风力涡轮机故障诊断问题和光伏模型参数估计问题上评估了VGHHO的性能。仿真结果表明,在大多数基准测试和实际问题上,VHHO比基本HHO和文献中的一些知名算法具有更高的解质量和更快的收敛速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d94/9309607/7e727b3f13a4/10462_2022_10233_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验