Suppr超能文献

一种基于动态光谱的非接触式血氧饱和度检测方法。

A non-contact oxygen saturation detection method based on dynamic spectrum.

作者信息

Lan Tian, Li Gang, Lin Ling

机构信息

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.

出版信息

Infrared Phys Technol. 2022 Dec;127:104421. doi: 10.1016/j.infrared.2022.104421. Epub 2022 Oct 26.

Abstract

Blood oxygen saturation (SpO) is an important monitoring indicator for many respiratory diseases. Non-contact oximetry offers outstanding advantages in both coronavirus pandemic monitoring and sleep monitoring, but at the same time poses both challenges regarding technology and environment. Therefore, we propose a method for non-contact SpO measurement based on the principle of DS (dynamic spectrum) in this paper. A multispectral camera with 24 wavelengths (range in 660 nm-950 nm) is used to capture video of the people's cheek region, and then the two-dimensional images are converted into a one-dimensional temporal PPG signal. After pre-processing the PPG signal, the 24 wavelengths DS values are extracted. The optimal wavelength combination is obtained by wavelength screening using the one-by-one elimination method, and a PLS (partial least squares) model is established using the SpO values measured simultaneously by pulse oximetry as the modeled true values. The facial videos of eight healthy subjects were collected, and a total of 140 valid samples were obtained. By analyzing the modeling results, the regression coefficient (R) and root mean square error (RMSE) of the modeled set were 0.6366 and 0.9906, respectively. This method can significantly respond to the variation of SpO, and the prediction results are approaching to the prediction accuracy (±2%) of most pulse oximeters in the market. Using DS theory in this method eliminates in principle the interference of static tissue, individual differences, and environment. It fully meets the strong demand for non-contact oximetry and provides a new measurement idea.

摘要

血氧饱和度(SpO)是许多呼吸系统疾病的重要监测指标。非接触式血氧测定法在新冠疫情监测和睡眠监测方面都具有显著优势,但同时在技术和环境方面也带来了挑战。因此,本文提出一种基于动态光谱(DS)原理的非接触式SpO测量方法。使用一台具有24个波长(范围在660nm - 950nm)的多光谱相机采集人体脸颊区域的视频,然后将二维图像转换为一维时间序列的光电容积脉搏波(PPG)信号。对PPG信号进行预处理后,提取24个波长的DS值。采用逐一淘汰法进行波长筛选得到最优波长组合,并以脉搏血氧仪同时测量的SpO值作为建模真值建立偏最小二乘(PLS)模型。采集了8名健康受试者的面部视频,共获得140个有效样本。通过分析建模结果,建模集的回归系数(R)和均方根误差(RMSE)分别为0.6366和0.9906。该方法能够显著响应SpO的变化,预测结果接近市场上大多数脉搏血氧仪的预测精度(±2%)。该方法中使用DS理论从原理上消除了静态组织、个体差异和环境的干扰。它充分满足了对非接触式血氧测定的强烈需求,并提供了一种新的测量思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81b9/9598047/7ec87ca6b771/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验