Suppr超能文献

机器学习在人类频率跟随反应中的应用:教程

Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial.

作者信息

Jeng Fuh-Cherng, Jeng Yu-Shiang

机构信息

Communication Sciences and Disorders, Ohio University, Athens, Ohio.

Computer Science and Engineering, Ohio State University, Columbus, Ohio.

出版信息

Semin Hear. 2022 Oct 26;43(3):251-274. doi: 10.1055/s-0042-1756219. eCollection 2022 Aug.

Abstract

The frequency-following response (FFR) provides enriched information on how acoustic stimuli are processed in the human brain. Based on recent studies, machine learning techniques have demonstrated great utility in modeling human FFRs. This tutorial focuses on the fundamental principles, algorithmic designs, and custom implementations of several supervised models (linear regression, logistic regression, -nearest neighbors, support vector machines) and an unsupervised model ( -means clustering). Other useful machine learning tools (Markov chains, dimensionality reduction, principal components analysis, nonnegative matrix factorization, and neural networks) are discussed as well. Each model's applicability and its pros and cons are explained. The choice of a suitable model is highly dependent on the research question, FFR recordings, target variables, extracted features, and their data types. To promote understanding, an example project implemented in Python is provided, which demonstrates practical usage of several of the discussed models on a sample dataset of six FFR features and a target response label.

摘要

频率跟随反应(FFR)提供了关于人类大脑如何处理声学刺激的丰富信息。基于最近的研究,机器学习技术在模拟人类FFR方面已显示出巨大的效用。本教程重点介绍几种监督模型(线性回归、逻辑回归、K近邻、支持向量机)和一种无监督模型(K均值聚类)的基本原理、算法设计和自定义实现。还讨论了其他有用的机器学习工具(马尔可夫链、降维、主成分分析、非负矩阵分解和神经网络)。解释了每个模型的适用性及其优缺点。合适模型的选择高度依赖于研究问题、FFR记录、目标变量、提取的特征及其数据类型。为了促进理解,提供了一个用Python实现的示例项目,该项目展示了在一个包含六个FFR特征和一个目标响应标签的样本数据集上所讨论的几种模型的实际用法。

相似文献

1
Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial.
Semin Hear. 2022 Oct 26;43(3):251-274. doi: 10.1055/s-0042-1756219. eCollection 2022 Aug.
2
Machine Learning Recognizes Frequency-Following Responses in American Adults: Effects of Reference Spectrogram and Stimulus Token.
Percept Mot Skills. 2024 Oct;131(5):1584-1602. doi: 10.1177/00315125241273993. Epub 2024 Aug 16.
4
Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods.
Acad Pathol. 2019 Sep 3;6:2374289519873088. doi: 10.1177/2374289519873088. eCollection 2019 Jan-Dec.
5
Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis.
Artif Intell Med. 2019 Mar;94:110-116. doi: 10.1016/j.artmed.2019.02.006. Epub 2019 Feb 25.
6
Application of noise-reduction techniques to machine learning algorithms for breast cancer tumor identification.
Comput Biol Med. 2021 Aug;135:104576. doi: 10.1016/j.compbiomed.2021.104576. Epub 2021 Jun 19.
7
Machine Learning Methods in Computational Toxicology.
Methods Mol Biol. 2018;1800:119-139. doi: 10.1007/978-1-4939-7899-1_5.
8
A Demonstration of Machine Learning in Detecting Frequency Following Responses in American Neonates.
Percept Mot Skills. 2021 Feb;128(1):48-58. doi: 10.1177/0031512520960390. Epub 2020 Sep 22.

引用本文的文献

本文引用的文献

1
Rapid Enhancement of Subcortical Neural Responses to Sine-Wave Speech.
Front Neurosci. 2021 Dec 20;15:747303. doi: 10.3389/fnins.2021.747303. eCollection 2021.
2
Frequency-Following Responses to Speech Sounds Are Highly Conserved across Species and Contain Cortical Contributions.
eNeuro. 2021 Dec 23;8(6). doi: 10.1523/ENEURO.0451-21.2021. Print 2021 Nov-Dec.
3
Deficient neural encoding of speech sounds in term neonates born after fetal growth restriction.
Dev Sci. 2022 May;25(3):e13189. doi: 10.1111/desc.13189. Epub 2021 Nov 18.
4
Frequency-Following Response in Newborns and Infants: A Systematic Review of Acquisition Parameters.
J Speech Lang Hear Res. 2021 Jun 4;64(6):2085-2102. doi: 10.1044/2021_JSLHR-20-00639. Epub 2021 May 31.
5
Baseline, retest, and post-injury profiles of auditory neural function in collegiate football players.
Int J Audiol. 2021 Sep;60(9):650-662. doi: 10.1080/14992027.2020.1860261. Epub 2021 Jan 13.
6
Case studies in neuroscience: cortical contributions to the frequency-following response depend on subcortical synchrony.
J Neurophysiol. 2021 Jan 1;125(1):273-281. doi: 10.1152/jn.00104.2020. Epub 2020 Nov 18.
7
A Demonstration of Machine Learning in Detecting Frequency Following Responses in American Neonates.
Percept Mot Skills. 2021 Feb;128(1):48-58. doi: 10.1177/0031512520960390. Epub 2020 Sep 22.
8
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
9
Non-invasive peripheral nerve stimulation selectively enhances speech category learning in adults.
NPJ Sci Learn. 2020 Aug 6;5:12. doi: 10.1038/s41539-020-0070-0. eCollection 2020.
10
Auditory Processing Differences in Toddlers With Autism Spectrum Disorder.
J Speech Lang Hear Res. 2020 May 22;63(5):1608-1617. doi: 10.1044/2020_JSLHR-19-00061. Epub 2020 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验