Nguyên T T T, Doanh T, Bot A Le, Dalmas D
Ecole Nationale des Travaux Publics de l'Etat, LTDS (UMR 5513), Vaulx en Velin, France.
Ecole Centrale de Lyon, LTDS (UMR 5513), Ecully, France.
Sci Rep. 2022 Oct 31;12(1):18304. doi: 10.1038/s41598-022-20231-6.
Unexpectedly, granular materials can fail, the structure even destroyed, spontaneously in simple isotropic compression with stick-slip-like frictional behaviour. This extreme behaviour is conceptually impossible for saturated two-phase assembly in classical granular physics. Furthermore, the triggering mechanisms of these laboratory events remain mysterious, as in natural earthquakes. Here, we report a new interpretation of these failures in under-explored isotropic compression using the time-frequency analysis of Cauchy continuous wavelet transform of acoustic emissions and multiphysics numerical simulations. Wavelet transformation techniques can give insights into the temporal evolution of the state of granular materials en route to failure and offer a plausible explanation of the distinctive hearing sound of the stick-slip phenomenon. We also extend the traditional statistical seismic Gutenberg-Richter power-law behaviour for hypothetical biggest earthquakes based on the mechanisms of stick-slip frictional instability, using very large artificial isotropic labquakes and the ultimate unpredictable liquefaction failure.
出乎意料的是,颗粒材料会失效,其结构甚至会被破坏,在具有类似粘滑摩擦行为的简单各向同性压缩中自发发生。这种极端行为在经典颗粒物理学中对于饱和两相组合在概念上是不可能的。此外,这些实验室事件的触发机制仍然神秘,就像在自然地震中一样。在这里,我们通过对声发射的柯西连续小波变换进行时频分析和多物理场数值模拟,报告了对这些在未充分探索的各向同性压缩中的失效的一种新解释。小波变换技术可以深入了解颗粒材料在失效过程中的状态随时间的演变,并为粘滑现象独特的听觉声音提供合理的解释。我们还基于粘滑摩擦不稳定性机制,利用非常大的人工各向同性实验室地震和最终不可预测的液化失效,扩展了传统的统计地震古登堡-里希特幂律行为,用于假设的最大地震。