Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States.
Environ Sci Technol. 2022 Nov 15;56(22):15437-15448. doi: 10.1021/acs.est.2c05640. Epub 2022 Nov 1.
Abundant substituted catechols are emitted to, and created in, the atmosphere during wildfires and anthropogenic combustion and agro-industrial processes. While ozone (O) and hydroxyl radicals (HO) efficiently react in a 1 μs contact time with catechols at the air-water interface, the nighttime reactivity dominated by nitrate radicals (NO) remains unexplored. Herein, online electrospray ionization mass spectrometry (OESI-MS) is used to explore the reaction of NO(g) with a series of representative catechols (catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol) on the surface of aqueous microdroplets. The work detects the ultrafast generation of nitrocatechol (aromatic) compounds, which are major constituents of atmospheric brown carbon. Two mechanisms are proposed to produce nitrocatechols, one (equivalent to H atom abstraction) following fast electron transfer from the catechols (QH) to NO, forming NO and QH that quickly deprotonates into a semiquinone radical (QH). The second mechanism proceeds via cyclohexadienyl radical intermediates from NO attack to the ring. Experiments in the pH range from 4 to 8 showed that the production of nitrocatechols was favored under the most acidic conditions. Mechanistically, the results explain the interfacial production of chromophoric nitrocatechols that modify the absorption properties of tropospheric particles, making them more susceptible to photooxidation, and alter the Earth's radiative forcing.
在野火、人为燃烧和农业工业过程中,大量取代的儿茶酚被排放到大气中,并在大气中生成。虽然臭氧 (O) 和羟基自由基 (HO) 在与气-水界面上儿茶酚的 1 μs 接触时间内有效反应,但夜间主要由硝酸盐自由基 (NO) 主导的反应仍未得到探索。在此,在线电喷雾电离质谱 (OESI-MS) 用于探索 NO(g)与一系列代表性儿茶酚(儿茶酚、焦儿茶酚、3-甲基儿茶酚、4-甲基儿茶酚和 3-甲氧基儿茶酚)在水微滴表面的反应。该工作检测到硝代儿茶酚(芳香族)化合物的超快生成,硝代儿茶酚是大气棕色碳的主要成分。提出了两种产生硝代儿茶酚的机制,一种(相当于 H 原子的抽提)是 NO 快速从儿茶酚 (QH) 中进行电子转移,形成 NO 和 QH,QH 迅速去质子化形成半醌自由基 (QH)。第二种机制是通过 NO 攻击环形成环己二烯基自由基中间体。在 pH 值范围从 4 到 8 的实验表明,在最酸性条件下有利于产生硝代儿茶酚。从机理上讲,结果解释了界面上产生的生色硝代儿茶酚,改变了对流层颗粒的吸收特性,使它们更容易光氧化,并改变地球的辐射强迫。