Department of Chemistry, Stanford University, Stanford, California94305, United States.
Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States.
J Am Chem Soc. 2022 Nov 16;144(45):20717-20725. doi: 10.1021/jacs.2c08182. Epub 2022 Nov 1.
The rechargeability of lithium metal batteries strongly depends on the electrolyte. The uniformity of the electroplated Li anode morphology underlies this dependence, so understanding the main drivers of uniform plating is critical for further electrolyte discovery. Here, we correlate electroplating kinetics with cyclability across several classes of electrolytes to reveal the mechanistic influence electrolytes have on morphology. Fast charge-transfer kinetics at fresh Li-electrolyte interfaces correlate well with uniform morphology and cyclability, whereas the resistance of Li transport through the solid electrolyte interphase (SEI) weakly correlates with cyclability. These trends contrast with the conventional thought that Li transport through the electrolyte or SEI is the main driver of morphological differences between classes of electrolytes. Relating these trends to Li solvation, Li nucleation, and the charge-transfer mechanism instead suggests that the Li/Li equilibrium potential and the surface energy─thermodynamic factors modulated by the strength of Li solvation─underlie electrolyte-dependent trends of Li morphology. Overall, this work provides an insight for discovering functional electrolytes, tuning kinetics in batteries, and explaining why weakly solvating fluorinated electrolytes favor uniform Li plating.
锂电池的可充电性强烈依赖于电解液。电镀 Li 阳极形态的均匀性是这种依赖性的基础,因此理解均匀电镀的主要驱动因素对于进一步发现电解液至关重要。在这里,我们通过几种类型的电解液将电镀动力学与循环性能相关联,以揭示电解液对形态的机械影响。新鲜 Li-电解质界面的快速电荷转移动力学与均匀形态和循环性能密切相关,而 Li 通过固体电解质界面(SEI)的传输电阻与循环性能弱相关。这些趋势与传统观念相反,即电解液或 SEI 中的 Li 传输是电解液类别之间形态差异的主要驱动因素。将这些趋势与 Li 溶剂化、Li 成核和电荷转移机制相关联,而不是相反,表明 Li/Li 平衡电位和表面能——由 Li 溶剂化强度调节的热力学因素——是电解液依赖性 Li 形态趋势的基础。总的来说,这项工作为发现功能性电解液、调节电池中的动力学以及解释为什么弱溶剂化的氟化电解液有利于均匀的 Li 电镀提供了深入的见解。