Liu Sufu, Ji Xiao, Piao Nan, Chen Ji, Eidson Nico, Xu Jijian, Wang Pengfei, Chen Long, Zhang Jiaxun, Deng Tao, Hou Singyuk, Jin Ting, Wan Hongli, Li Jingru, Tu Jiangping, Wang Chunsheng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA.
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science& Engineering, Zhejiang University, Hangzhou, 310027, China.
Angew Chem Int Ed Engl. 2021 Feb 15;60(7):3661-3671. doi: 10.1002/anie.202012005. Epub 2020 Dec 16.
In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO ions and their participation in the primary Li solvation sheath, abundant Li O, Li N, and LiN O grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm , 1.0 mAh cm ) and the electrolyte also enables a Li||LiNi Co Mn O (NMC811) full cell (2.5 mAh cm ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.
在碳酸盐电解质中,锂金属阳极表面形成的有机-无机固体电解质界面(SEI)与锂紧密结合,并与锂经历相同的体积变化,因此在电镀/剥离循环过程中会不断发生开裂/重整。在此,通过将4m浓硝酸锂溶解在二甲基亚砜(DMSO)中作为基于氟代碳酸乙烯酯(FEC)的电解质添加剂,在锂金属表面设计了一种富含无机成分的SEI,以降低其与锂金属的结合能。由于硝酸根离子的聚集结构及其参与锂的初级溶剂化鞘层,除了由PF离子还原产生的均匀LiF分布外,在所得的SEI中还形成了大量的LiO、LiN和LiNO晶粒。SEI与锂的弱结合(高界面能)可以有效地促进锂沿SEI/Li界面的扩散,并防止锂枝晶穿透到SEI中。结果,我们设计的碳酸盐电解质使锂阳极能够实现99.55%的高锂电镀/剥离库仑效率(1 mA cm,1.0 mAh cm),并且该电解质还使Li||LiNiCoMn O(NMC811)全电池(2.5 mAh cm)在200次循环后能够保持其初始容量的75%,库仑效率高达99.83%。