Swanson K K, Mariscal D A, Djordjevic B Z, Zeraouli G, Scott G G, Hollinger R, Wang S, Song H, Sullivan B, Nedbailo R, Rocca J J, Ma T
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Colorado State University, Fort Collins, Colorado 80523, USA.
Rev Sci Instrum. 2022 Oct 1;93(10):103547. doi: 10.1063/5.0101857.
Accurately and rapidly diagnosing laser-plasma interactions is often difficult due to the time-intensive nature of the analysis and will only become more so with the rise of high repetition rate lasers and the desire to implement feedback on a commensurate timescale. Diagnostic analysis employing machine learning techniques can help address this problem while maintaining a high degree of accuracy. We report on the application of machine learning to the analysis of a scintillator-based electron spectrometer for experiments on high intensity, laser-plasma interactions at the Colorado State University Advanced Lasers and Extreme Photonics facility. Our approach utilizes a neural network trained on synthetic data and tested on experiments to extract the accelerated electron temperature. By leveraging transfer learning, we demonstrate an improvement in the neural network accuracy, decreasing the network error by 50%.
由于分析过程耗时较长,准确且快速地诊断激光与等离子体相互作用往往很困难,而且随着高重复频率激光器的兴起以及在相应时间尺度上实现反馈的需求,这一情况只会变得更加严峻。采用机器学习技术的诊断分析有助于解决这一问题,同时保持较高的准确性。我们报告了机器学习在基于闪烁体的电子能谱仪分析中的应用,该能谱仪用于科罗拉多州立大学先进激光与极端光子学设施中关于高强度激光与等离子体相互作用的实验。我们的方法利用在合成数据上训练并在实验中测试的神经网络来提取加速电子温度。通过利用迁移学习,我们证明了神经网络准确性的提高,将网络误差降低了50%。