Suppr超能文献

机器学习在紧凑型磁谱仪用于高重复率激光驱动粒子加速方面的应用。

Applications of machine learning to a compact magnetic spectrometer for high repetition rate, laser-driven particle acceleration.

作者信息

Swanson K K, Mariscal D A, Djordjevic B Z, Zeraouli G, Scott G G, Hollinger R, Wang S, Song H, Sullivan B, Nedbailo R, Rocca J J, Ma T

机构信息

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

Colorado State University, Fort Collins, Colorado 80523, USA.

出版信息

Rev Sci Instrum. 2022 Oct 1;93(10):103547. doi: 10.1063/5.0101857.

Abstract

Accurately and rapidly diagnosing laser-plasma interactions is often difficult due to the time-intensive nature of the analysis and will only become more so with the rise of high repetition rate lasers and the desire to implement feedback on a commensurate timescale. Diagnostic analysis employing machine learning techniques can help address this problem while maintaining a high degree of accuracy. We report on the application of machine learning to the analysis of a scintillator-based electron spectrometer for experiments on high intensity, laser-plasma interactions at the Colorado State University Advanced Lasers and Extreme Photonics facility. Our approach utilizes a neural network trained on synthetic data and tested on experiments to extract the accelerated electron temperature. By leveraging transfer learning, we demonstrate an improvement in the neural network accuracy, decreasing the network error by 50%.

摘要

由于分析过程耗时较长,准确且快速地诊断激光与等离子体相互作用往往很困难,而且随着高重复频率激光器的兴起以及在相应时间尺度上实现反馈的需求,这一情况只会变得更加严峻。采用机器学习技术的诊断分析有助于解决这一问题,同时保持较高的准确性。我们报告了机器学习在基于闪烁体的电子能谱仪分析中的应用,该能谱仪用于科罗拉多州立大学先进激光与极端光子学设施中关于高强度激光与等离子体相互作用的实验。我们的方法利用在合成数据上训练并在实验中测试的神经网络来提取加速电子温度。通过利用迁移学习,我们证明了神经网络准确性的提高,将网络误差降低了50%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验