LaRue Jerry, Liu Boyang, Rodrigues Gabriel L S, Liu Chang, Garrido Torres Jose Antonio, Schreck Simon, Diesen Elias, Weston Matthew, Ogasawara Hirohito, Perakis Fivos, Dell'Angela Martina, Capotondi Flavio, Ball Devon, Carnahan Conner, Zeri Gary, Giannessi Luca, Pedersoli Emanuele, Naumenko Denys, Amann Peter, Nikolov Ivaylo, Raimondi Lorenzo, Spezzani Carlo, Beye Martin, Voss Johannes, Wang Hsin-Yi, Cavalca Filippo, Gladh Jörgen, Koroidov Sergey, Abild-Pedersen Frank, Kolb Manuel, Miedema Piter S, Costantini Roberto, Heinz Tony F, Luntz Alan C, Pettersson Lars G M, Nilsson Anders
Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA.
Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
J Chem Phys. 2022 Oct 28;157(16):164705. doi: 10.1063/5.0114399.
We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10 Torr) and O (3 × 10 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO using a mass spectrometer and observe weak signatures of bent adsorbed CO at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10 Torr) while maintaining the same O pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC-O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward "gas-like" CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole-dipole interaction while simultaneously increasing the CO oxidation barrier.
我们报告了在碳K边通过时间分辨X射线吸收光谱(TR-XAS)探测的O/Ru(0001)表面上,400纳米飞秒激光激发诱导的一氧化碳解吸和氧化。实验在CO(6×10托)和O(3×10托)的恒定背景压力下进行。在这些条件下,我们检测到两种具有窄2π峰的瞬态CO物种,表明与表面的2π相互作用很小。基于偏振测量,我们发现这两种物种具有相反的取向:(1)CO倾向于更垂直的取向,(2)CO倾向于相对于表面更平行的取向。我们还使用质谱仪直接检测气相CO,并在略高于2π区域的X射线能量下观察到弯曲吸附CO的微弱信号。将这些结果与先前报道的在O K边的TR-XAS结果进行比较,在那里CO背景压力低三倍(2×10托),同时保持相同的O压力。在较低的CO压力下,在CO 2π区域,我们观察到吸附的CO和接近CO氧化过渡态的OC-O键长分布,几乎没有气态CO的迹象。向“气态”CO物种的转变可以通过更高的CO暴露来解释,这会阻止O吸附,降低O覆盖率并增加CO覆盖率。这些效应通过偶极-偶极相互作用降低了CO解吸势垒,同时增加了CO氧化势垒。