Suppr超能文献

识别与阿尔茨海默病风险相关的脆弱性脑网络。

Identifying vulnerable brain networks associated with Alzheimer's disease risk.

机构信息

Radiology Department, Duke University Medical School, Durham, 27710 NC, USA.

Brain Imaging and Analysis Center, Duke University Medical School, Durham, 27710 NC, USA.

出版信息

Cereb Cortex. 2023 Apr 25;33(9):5307-5322. doi: 10.1093/cercor/bhac419.

Abstract

The selective vulnerability of brain networks in individuals at risk for Alzheimer's disease (AD) may help differentiate pathological from normal aging at asymptomatic stages, allowing the implementation of more effective interventions. We used a sample of 72 people across the age span, enriched for the APOE4 genotype to reveal vulnerable networks associated with a composite AD risk factor including age, genotype, and sex. Sparse canonical correlation analysis (CCA) revealed a high weight associated with genotype, and subgraphs involving the cuneus, temporal, cingulate cortices, and cerebellum. Adding cognitive metrics to the risk factor revealed the highest cumulative degree of connectivity for the pericalcarine cortex, insula, banks of the superior sulcus, and the cerebellum. To enable scaling up our approach, we extended tensor network principal component analysis, introducing CCA components. We developed sparse regression predictive models with errors of 17% for genotype, 24% for family risk factor for AD, and 5 years for age. Age prediction in groups including cognitively impaired subjects revealed regions not found using only normal subjects, i.e. middle and transverse temporal, paracentral and superior banks of temporal sulcus, as well as the amygdala and parahippocampal gyrus. These modeling approaches represent stepping stones towards single subject prediction.

摘要

在无症状阶段,阿尔茨海默病(AD)高危个体的大脑网络具有选择性易损性,这有助于将病理性衰老与正常衰老区分开来,从而实施更有效的干预措施。我们使用了一个包含 72 人的样本,该样本中富集了 APOE4 基因型,以揭示与包括年龄、基因型和性别在内的复合 AD 风险因素相关的脆弱网络。稀疏典型相关分析(CCA)显示出与基因型高度相关的权重,以及涉及楔前叶、颞叶、扣带回皮质和小脑的子图。将认知指标添加到风险因素中,揭示了距状皮层、脑岛、上纵束和小脑的累积连通度最高。为了扩展我们的方法,我们扩展了张量网络主成分分析,引入了 CCA 组件。我们开发了稀疏回归预测模型,其对基因型的误差为 17%,对 AD 家族风险因素的误差为 24%,对年龄的误差为 5 年。在包括认知障碍受试者的群体中进行年龄预测时,发现了仅使用正常受试者时未发现的区域,即中颞叶和横颞叶、旁中央和颞上沟的上部、杏仁核和海马旁回。这些建模方法是迈向个体预测的垫脚石。

相似文献

1
Identifying vulnerable brain networks associated with Alzheimer's disease risk.
Cereb Cortex. 2023 Apr 25;33(9):5307-5322. doi: 10.1093/cercor/bhac419.
2
White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease.
Neuroimage Clin. 2014 Apr 21;4:730-42. doi: 10.1016/j.nicl.2014.04.008. eCollection 2014.
3
Multivariate MR biomarkers better predict cognitive dysfunction in mouse models of Alzheimer's disease.
Magn Reson Imaging. 2019 Jul;60:52-67. doi: 10.1016/j.mri.2019.03.022. Epub 2019 Mar 30.
4
Brain network fingerprints of Alzheimer's disease risk factors in mouse models with humanized APOE alleles.
Magn Reson Imaging. 2024 Dec;114:110251. doi: 10.1016/j.mri.2024.110251. Epub 2024 Oct 1.
5
Neural substrates of cognitive reserve in Alzheimer's disease spectrum and normal aging.
Neuroimage. 2019 Feb 1;186:690-702. doi: 10.1016/j.neuroimage.2018.11.053. Epub 2018 Nov 29.
6
Altered small-world anatomical networks in Apolipoprotein-E4 (ApoE4) carriers using MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2468-71. doi: 10.1109/EMBC.2014.6944122.

引用本文的文献

1
Olfactory-Guided Behavior Uncovers Imaging and Molecular Signatures of Alzheimer's Disease Risk.
Brain Sci. 2025 Aug 13;15(8):863. doi: 10.3390/brainsci15080863.
3
Network biomarkers of Alzheimer's disease risk derived from joint volume and texture covariance patterns in mouse models.
PLoS One. 2025 Aug 12;20(8):e0327118. doi: 10.1371/journal.pone.0327118. eCollection 2025.
7
Brain network fingerprints of Alzheimer's disease risk factors in mouse models with humanized APOE alleles.
Magn Reson Imaging. 2024 Dec;114:110251. doi: 10.1016/j.mri.2024.110251. Epub 2024 Oct 1.
8
The impact of metabolic syndrome on the cerebral cortex: a Mendelian randomization study.
Cereb Cortex. 2024 Aug 1;34(8). doi: 10.1093/cercor/bhae342.
9
APOE, Immune Factors, Sex, and Diet Interact to Shape Brain Networks in Mouse Models of Aging.
bioRxiv. 2024 Jul 1:2023.10.04.560954. doi: 10.1101/2023.10.04.560954.

本文引用的文献

1
Local structure-function relationships in human brain networks across the lifespan.
Nat Commun. 2022 Apr 19;13(1):2053. doi: 10.1038/s41467-022-29770-y.
2
Multivariate functional group sparse regression: Functional predictor selection.
PLoS One. 2022 Apr 7;17(4):e0265940. doi: 10.1371/journal.pone.0265940. eCollection 2022.
3
The role of the medial prefrontal cortex in cognition, ageing and dementia.
Brain Commun. 2021 Jun 11;3(3):fcab125. doi: 10.1093/braincomms/fcab125. eCollection 2021 Jul.
7
Neuroprotective Effects of Motherhood on Brain Function in Late Life: A Resting-State fMRI Study.
Cereb Cortex. 2021 Jan 5;31(2):1270-1283. doi: 10.1093/cercor/bhaa293.
8
A technical review of canonical correlation analysis for neuroscience applications.
Hum Brain Mapp. 2020 Sep;41(13):3807-3833. doi: 10.1002/hbm.25090. Epub 2020 Jun 27.
9
Study of brain morphology change in Alzheimer's disease and amnestic mild cognitive impairment compared with normal controls.
Gen Psychiatr. 2019 Apr 16;32(2):e100005. doi: 10.1136/gpsych-2018-100005. eCollection 2019.
10
Tensor network factorizations: Relationships between brain structural connectomes and traits.
Neuroimage. 2019 Aug 15;197:330-343. doi: 10.1016/j.neuroimage.2019.04.027. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验