Radiology Department, Duke University Medical School, Durham, 27710 NC, USA.
Brain Imaging and Analysis Center, Duke University Medical School, Durham, 27710 NC, USA.
Cereb Cortex. 2023 Apr 25;33(9):5307-5322. doi: 10.1093/cercor/bhac419.
The selective vulnerability of brain networks in individuals at risk for Alzheimer's disease (AD) may help differentiate pathological from normal aging at asymptomatic stages, allowing the implementation of more effective interventions. We used a sample of 72 people across the age span, enriched for the APOE4 genotype to reveal vulnerable networks associated with a composite AD risk factor including age, genotype, and sex. Sparse canonical correlation analysis (CCA) revealed a high weight associated with genotype, and subgraphs involving the cuneus, temporal, cingulate cortices, and cerebellum. Adding cognitive metrics to the risk factor revealed the highest cumulative degree of connectivity for the pericalcarine cortex, insula, banks of the superior sulcus, and the cerebellum. To enable scaling up our approach, we extended tensor network principal component analysis, introducing CCA components. We developed sparse regression predictive models with errors of 17% for genotype, 24% for family risk factor for AD, and 5 years for age. Age prediction in groups including cognitively impaired subjects revealed regions not found using only normal subjects, i.e. middle and transverse temporal, paracentral and superior banks of temporal sulcus, as well as the amygdala and parahippocampal gyrus. These modeling approaches represent stepping stones towards single subject prediction.
在无症状阶段,阿尔茨海默病(AD)高危个体的大脑网络具有选择性易损性,这有助于将病理性衰老与正常衰老区分开来,从而实施更有效的干预措施。我们使用了一个包含 72 人的样本,该样本中富集了 APOE4 基因型,以揭示与包括年龄、基因型和性别在内的复合 AD 风险因素相关的脆弱网络。稀疏典型相关分析(CCA)显示出与基因型高度相关的权重,以及涉及楔前叶、颞叶、扣带回皮质和小脑的子图。将认知指标添加到风险因素中,揭示了距状皮层、脑岛、上纵束和小脑的累积连通度最高。为了扩展我们的方法,我们扩展了张量网络主成分分析,引入了 CCA 组件。我们开发了稀疏回归预测模型,其对基因型的误差为 17%,对 AD 家族风险因素的误差为 24%,对年龄的误差为 5 年。在包括认知障碍受试者的群体中进行年龄预测时,发现了仅使用正常受试者时未发现的区域,即中颞叶和横颞叶、旁中央和颞上沟的上部、杏仁核和海马旁回。这些建模方法是迈向个体预测的垫脚石。