Suppr超能文献

土耳其与其他国家新冠疫情病例及死亡情况对比。

A comparison of Covid-19 cases and deaths in Turkey and in other countries.

作者信息

Çağlar Oğuzhan, Özen Figen

机构信息

Electrical and Electronics Engineering Department, Haliç University, Mareşal Fevzi Çakmak Cad. No: 15, Güzeltepe Mah. Eyüp, 34060 Istanbul, Turkey.

出版信息

Netw Model Anal Health Inform Bioinform. 2022;11(1):45. doi: 10.1007/s13721-022-00389-9. Epub 2022 Oct 27.

Abstract

In this study, the characteristics of the Covid-19 pandemic in Turkey are examined in terms of the number of cases and deaths, and a characteristic prediction is made with an approach that employs artificial intelligence. The number of cases and deaths are estimated using the number of tests, the numbers of seriously ill and recovered patients as parameters. The machine learning methods used are linear regression, polynomial regression, support vector regression with different kernel functions, decision tree and artificial neural networks. The obtained results are compared by calculating the coefficient of determination ( ), and the mean absolute percentage error (MAPE) values. When and MAPE values are compared, it is seen that the optimal results for cases in Turkey are obtained with the decision tree, for deaths with polynomial regression method. The results reached for the United States of America and Russia are similar and the optimal results are obtained by polynomial regression. However, while the optimal results are obtained by neural networks in the Indian data, linear regression for the cases in the Brazilian data, neural network for the deaths, decision tree for the cases in France, polynomial regression for the deaths, neural network for the cases in the UK data and decision tree for the deaths are the methods that produced the optimal results. These results also give an idea about the similarities and differences of country characteristics.

摘要

在本研究中,从病例数和死亡数方面考察了土耳其新冠疫情的特征,并采用人工智能方法进行了特征预测。以检测数、重症患者数和康复患者数为参数来估计病例数和死亡数。所使用的机器学习方法包括线性回归、多项式回归、具有不同核函数的支持向量回归、决策树和人工神经网络。通过计算决定系数( )和平均绝对百分比误差(MAPE)值来比较所得结果。当比较 和MAPE值时,可以看出土耳其病例的最优结果是通过决策树获得的,死亡数的最优结果是通过多项式回归方法获得的。美国和俄罗斯得到的结果相似,最优结果是通过多项式回归获得的。然而,在印度数据中,神经网络获得了最优结果;在巴西数据中,病例数的最优结果是通过线性回归获得的,死亡数的最优结果是通过神经网络获得的;在法国数据中,病例数的最优结果是通过决策树获得的,死亡数的最优结果是通过多项式回归获得的;在英国数据中,病例数的最优结果是通过神经网络获得的,死亡数的最优结果是通过决策树获得的。这些结果也让我们了解了各国特征的异同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f24/9612626/b4ad0503959f/13721_2022_389_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验