Deng Kai-Chao, Lu Zhi-Xuan, Sun Juan-Juan, Ye Jin-Yu, Dong Fan, Su Hai-Sheng, Yang Kang, Sartin Matthew M, Yan Sen, Cheng Jun, Zhou Zhi-You, Ren Bin
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
Fujian Science and Technology Innovation Laboratory for Energy Materials of China China.
Chem Sci. 2022 Aug 24;13(36):10884-10890. doi: 10.1039/d2sc01750d. eCollection 2022 Sep 21.
Interfacial pH is critical to electrocatalytic reactions involving proton-coupled electron transfer (PCET) processes, and maintaining an optimal interfacial pH at the electrochemical interface is required to achieve high activity. However, the interfacial pH varies inevitably during the electrochemical reaction owing to slow proton transfer at the interfacial layer, even in buffer solutions. It is therefore necessary to find an effective and general way to promote proton transfer for regulating the interfacial pH. In this study, we propose that promoting proton transfer at the interfacial layer can be used to regulate the interfacial pH in order to enhance electrocatalytic activity. By adsorbing a bifunctional 4-mercaptopyridine (4MPy) molecule onto the catalyst surface its thiol group, the pyridyl group can be tethered on the electrochemical interface. The pyridyl group acts as both a good proton acceptor and donor for promoting proton transfer at the interfacial layer. Furthermore, the p of 4MPy can be modulated with the applied potentials to accommodate the large variation of interfacial pH under different current densities. By electrochemical surface-enhanced Raman spectroscopy ( EC-SERS), we quantitatively demonstrate that proton transfer at the interfacial layer of the Pt catalyst coated with 4MPy (Pt@4MPy) remains ideally thermoneutral during the H releasing electrocatalytic oxidation reaction of formic acid (FAOR) at high current densities. Thus, the interfacial pH is controlled effectively. In this way, the FAOR apparent current measured from Pt@4MPy is twice that measured from a pristine Pt catalyst. This work establishes a general strategy for regulating interfacial pH to enhance the electrocatalytic activities.
界面pH值对于涉及质子耦合电子转移(PCET)过程的电催化反应至关重要,并且需要在电化学界面维持最佳的界面pH值以实现高活性。然而,由于界面层质子转移缓慢,即使在缓冲溶液中,电化学反应过程中界面pH值也不可避免地会发生变化。因此,有必要找到一种有效且通用的方法来促进质子转移以调节界面pH值。在本研究中,我们提出可以利用促进界面层的质子转移来调节界面pH值,从而提高电催化活性。通过将双功能的4-巯基吡啶(4MPy)分子吸附到催化剂表面,其硫醇基团可将吡啶基团 tethered 在电化学界面上。吡啶基团既是良好的质子受体又是供体,可促进界面层的质子转移。此外,4MPy的p 可通过施加的电位进行调节,以适应不同电流密度下界面pH值的大幅变化。通过电化学表面增强拉曼光谱(EC-SERS),我们定量证明了在高电流密度下甲酸的析氢电催化氧化反应(FAOR)过程中,涂覆有4MPy的Pt催化剂(Pt@4MPy)界面层的质子转移保持理想的热中性。因此,界面pH值得到有效控制。通过这种方式,从Pt@4MPy测得的FAOR表观电流是从原始Pt催化剂测得的两倍。这项工作建立了一种调节界面pH值以增强电催化活性的通用策略。 (注:原文中“tethered”一词在提供的文本中含义不明确,可能影响对整体内容的准确理解。)