Lewis Noah B, Bisbey Ryan P, Westendorff Karl S, Soudackov Alexander V, Surendranath Yogesh
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Chem. 2024 Mar;16(3):343-352. doi: 10.1038/s41557-023-01400-0. Epub 2024 Jan 16.
Electrochemical proton-coupled electron transfer (PCET) reactions can proceed via an outer-sphere electron transfer to solution (OS-PCET) or through an inner-sphere mechanism by interfacial polarization of surface-bound active sites (I-PCET). Although OS-PCET has been extensively studied with molecular insight, the inherent heterogeneity of surfaces impedes molecular-level understanding of I-PCET. Herein we employ graphite-conjugated carboxylic acids (GC-COOH) as molecularly well-defined hosts of I-PCET to isolate the intrinsic kinetics of I-PCET. We measure I-PCET rates across the entire pH range, uncovering a V-shaped pH-dependence that lacks the pH-independent regions characteristic of OS-PCET. Accordingly, we develop a mechanistic model for I-PCET that invokes concerted PCET involving hydronium/water or water/hydroxide donor/acceptor pairs, capturing the entire dataset with only four adjustable parameters. We find that I-PCET is fourfold faster with hydronium/water than water/hydroxide, while both reactions display similarly high charge transfer coefficients, indicating late proton transfer transition states. These studies highlight the key mechanistic distinctions between I-PCET and OS-PCET, providing a framework for understanding and modelling more complex multistep I-PCET reactions critical to energy conversion and catalysis.
电化学质子耦合电子转移(PCET)反应可以通过向溶液的外层电子转移(OS-PCET)进行,或者通过表面结合活性位点的界面极化的内层机制(I-PCET)进行。尽管OS-PCET已通过分子层面的洞察得到广泛研究,但表面固有的异质性阻碍了对I-PCET的分子水平理解。在此,我们采用石墨共轭羧酸(GC-COOH)作为I-PCET的分子定义明确的主体,以分离I-PCET的内在动力学。我们测量了整个pH范围内的I-PCET速率,发现了一种V形pH依赖性,其缺乏OS-PCET特有的与pH无关的区域。因此,我们开发了一种I-PCET的机理模型,该模型涉及水合氢离子/水或水/氢氧根供体/受体对的协同PCET,仅用四个可调参数就能捕捉整个数据集。我们发现,水合氢离子/水的I-PCET比水/氢氧根快四倍,而这两种反应都显示出类似的高电荷转移系数,表明质子转移过渡态较晚。这些研究突出了I-PCET和OS-PCET之间关键的机理区别,为理解和模拟对能量转换和催化至关重要的更复杂的多步I-PCET反应提供了一个框架。