Suppr超能文献

应用监督式机器学习技术预测美国新冠疫情衰退及股市崩盘

Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash.

作者信息

Malladi Rama K

机构信息

California State University Dominguez Hills, Carson, CA USA.

出版信息

Comput Econ. 2022 Oct 26:1-25. doi: 10.1007/s10614-022-10333-8.

Abstract

Machine learning (ML), a transformational technology, has been successfully applied to forecasting events down the road. This paper demonstrates that supervised ML techniques can be used in recession and stock market crash (more than 20% drawdown) forecasting. After learning from strictly past monthly data, ML algorithms detected the Covid-19 recession by December 2019, six months before the official NBER announcement. Moreover, ML algorithms foresaw the March 2020 S&P500 crash two months before it happened. The current labor market and housing are harbingers of a future U.S. recession (in 3 months). Financial factors have a bigger role to play in stock market crashes than economic factors. The labor market appears as a top-two feature in predicting both recessions and crashes. ML algorithms detect that the U.S. exited recession before December 2020, even though the official NBER announcement has not yet been made. They also do not anticipate a U.S. stock market crash before March 2021. ML methods have three times higher false discovery rates of recessions compared to crashes.

摘要

机器学习(ML)作为一种变革性技术,已成功应用于预测未来事件。本文表明,监督式机器学习技术可用于衰退和股市崩盘(跌幅超过20%)预测。在严格从过去的月度数据中学习后,机器学习算法在2019年12月就检测到了新冠疫情衰退,比美国国家经济研究局(NBER)的官方宣布早了六个月。此外,机器学习算法在2020年3月标准普尔500指数崩盘发生前两个月就预见到了。当前的劳动力市场和房地产市场是未来美国衰退(未来三个月内)的预兆。在股市崩盘中,金融因素比经济因素发挥的作用更大。劳动力市场在预测衰退和崩盘方面均位列最重要的两大特征。机器学习算法检测到美国在2020年12月之前就已走出衰退,尽管NBER尚未发布官方声明。它们也没有预测到2021年3月之前美国股市会崩盘。与预测崩盘相比,机器学习方法预测衰退的误报率高出两倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验