Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States.
J Am Chem Soc. 2022 Nov 16;144(45):20699-20709. doi: 10.1021/jacs.2c07988. Epub 2022 Nov 2.
Rate-driving force relationships, known as Brønsted-Evans-Polanyi (BEP) relations, are central to many methods for predicting the performance of heterogeneous catalysts and electrocatalysts. Methods such as Tafel plots and "volcano" analyses often assume that the effect of adsorbate coverage on reaction rates across different materials is constant and known. Here, we use UV-visible spectroscopy to test these assumptions by measuring rates of net hydrogen atom transfer from colloidal cerium oxide nanoparticles (nanoceria) to organic reagents at varying surface CeO-H bond strengths and surface coverages. The resulting rate constants follow a linear BEP relationship, Δlog() = αΔlog(), across two sizes of nanoceria, two organic reagents, and a ∼10 kcal mol range of CeO-H bond strengths. Interestingly, the Brønsted slope is only 0.2, demonstrating that the rate constants are far less sensitive to CeO-H bond strength than would commonly be assumed for a heterogeneous nanomaterial. Furthermore, we observe a Brønsted slope >1 when altering the reaction driving force via the organic reagent bond strength instead of that of CeO-H. The implications of these Brønsted slopes for either concerted or stepwise mechanisms are discussed. To our knowledge, these are the first solution-phase measurements of BEP relationships for hydrogen coverage on a (nano)material.
速率决定因素关系,即布仑斯特定律-埃文斯-波兰尼关系,是许多预测多相催化剂和电催化剂性能的方法的核心。例如塔菲尔图和“火山”分析等方法通常假设不同材料的吸附覆盖度对反应速率的影响是恒定且已知的。在这里,我们使用紫外-可见光谱法通过测量胶体氧化铈纳米粒子(纳米氧化铈)与有机试剂之间净氢原子转移的速率来测试这些假设,这些速率在不同的表面 CeO-H 键强度和表面覆盖率下进行。所得的速率常数遵循线性布仑斯特定律关系,Δlog() = αΔlog(),跨越两种大小的纳米氧化铈、两种有机试剂和 ∼10 kcal mol 的 CeO-H 键强度范围。有趣的是,布仑斯特定律的斜率仅为 0.2,表明速率常数对 CeO-H 键强度的敏感性远低于对多相纳米材料的通常假设。此外,当通过有机试剂键强度而不是 CeO-H 来改变反应驱动力时,我们观察到布仑斯特定律斜率>1。这些布仑斯特定律斜率对于协同或分步机制的影响进行了讨论。据我们所知,这是首次在溶液相中对(纳米)材料上的氢覆盖度进行布仑斯特定律关系的测量。