Suppr超能文献

外部硬件和传感器,可改善 MRI 效果。

External Hardware and Sensors, for Improved MRI.

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

出版信息

J Magn Reson Imaging. 2023 Mar;57(3):690-705. doi: 10.1002/jmri.28472. Epub 2022 Nov 3.

Abstract

Complex engineered systems are often equipped with suites of sensors and ancillary devices that monitor their performance and maintenance needs. MRI scanners are no different in this regard. Some of the ancillary devices available to support MRI equipment, the ones of particular interest here, have the distinction of actually participating in the image acquisition process itself. Most commonly, such devices are used to monitor physiological motion or variations in the scanner's imaging fields, allowing the imaging and/or reconstruction process to adapt as imaging conditions change. "Classic" examples include electrocardiography (ECG) leads and respiratory bellows to monitor cardiac and respiratory motion, which have been standard equipment in scan rooms since the early days of MRI. Since then, many additional sensors and devices have been proposed to support MRI acquisitions. The main physical properties that they measure may be primarily "mechanical" (eg acceleration, speed, and torque), "acoustic" (sound and ultrasound), "optical" (light and infrared), or "electromagnetic" in nature. A review of these ancillary devices, as currently available in clinical and research settings, is presented here. In our opinion, these devices are not in competition with each other: as long as they provide useful and unique information, do not interfere with each other and are not prohibitively cumbersome to use, they might find their proper place in future suites of sensors. In time, MRI acquisitions will likely include a plurality of complementary signals. A little like the microbiome that provides genetic diversity to organisms, these devices can provide signal diversity to MRI acquisitions and enrich measurements. Machine-learning (ML) algorithms are well suited at combining diverse input signals toward coherent outputs, and they could make use of all such information toward improved MRI capabilities. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

摘要

复杂的工程系统通常配备有一系列传感器和辅助设备,用于监测其性能和维护需求。磁共振成像 (MRI) 扫描仪在这方面也不例外。有一些辅助设备可用于支持 MRI 设备,这里特别感兴趣的是那些实际上参与图像采集过程本身的设备。这些设备通常用于监测生理运动或扫描仪成像场的变化,使成像和/或重建过程能够适应成像条件的变化。“经典”的例子包括心电图 (ECG) 导联和呼吸波纹管,用于监测心脏和呼吸运动,自 MRI 早期以来,它们一直是扫描室的标准设备。从那时起,已经提出了许多其他传感器和设备来支持 MRI 采集。它们测量的主要物理特性可能主要是“机械”(例如加速度、速度和扭矩)、“声学”(声音和超声波)、“光学”(光和红外线)或“电磁”性质。这里介绍了这些辅助设备在临床和研究环境中的当前可用性。我们认为,这些设备之间不是竞争关系:只要它们提供有用且独特的信息,不会相互干扰,并且使用起来不是过于繁琐,它们就有可能在未来的传感器套件中找到自己的位置。随着时间的推移,MRI 采集可能会包含多种互补信号。有点像微生物组为生物体提供遗传多样性一样,这些设备可以为 MRI 采集提供信号多样性,并丰富测量结果。机器学习 (ML) 算法非常适合将多种输入信号组合为一致的输出,并且可以利用所有这些信息来提高 MRI 的能力。证据水平:2 技术功效:阶段 1。

相似文献

1
External Hardware and Sensors, for Improved MRI.
J Magn Reson Imaging. 2023 Mar;57(3):690-705. doi: 10.1002/jmri.28472. Epub 2022 Nov 3.
2
A hardware and software system for MRI applications requiring external device data.
Magn Reson Med. 2022 Sep;88(3):1406-1418. doi: 10.1002/mrm.29280. Epub 2022 May 4.
3
An optical fiber-based gating device for prospective mouse cardiac MRI.
IEEE Trans Biomed Eng. 2014 Jan;61(1):162-70. doi: 10.1109/TBME.2013.2278712. Epub 2013 Sep 5.
4
5
Motion correction options in PET/MRI.
Semin Nucl Med. 2015 May;45(3):212-23. doi: 10.1053/j.semnuclmed.2015.01.001.
7
Free-breathing fetal cardiac MRI with doppler ultrasound gating, compressed sensing, and motion compensation.
J Magn Reson Imaging. 2020 Jan;51(1):260-272. doi: 10.1002/jmri.26842. Epub 2019 Jun 22.
9
Cardiac motion and spillover correction for quantitative PET imaging using dynamic MRI.
Med Phys. 2019 Feb;46(2):726-737. doi: 10.1002/mp.13345. Epub 2019 Jan 15.
10
Ultrasound-based sensors to monitor physiological motion.
Med Phys. 2021 Jul;48(7):3614-3622. doi: 10.1002/mp.14949. Epub 2021 Jun 7.

引用本文的文献

4
Free-breathing MRI techniques for fat and R* quantification in the liver.
MAGMA. 2024 Aug;37(4):583-602. doi: 10.1007/s10334-024-01187-2. Epub 2024 Jul 23.
5
US & MR/CT Image Fusion with Markerless Skin Registration: A Proof of Concept.
J Imaging Inform Med. 2025 Feb;38(1):615-628. doi: 10.1007/s10278-024-01176-w. Epub 2024 Jul 17.
6
Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging.
Sensors (Basel). 2024 Jun 7;24(12):3710. doi: 10.3390/s24123710.
7
Beat Pilot Tone (BPT): Simultaneous MRI and RF motion sensing at arbitrary frequencies.
Magn Reson Med. 2024 Oct;92(4):1768-1787. doi: 10.1002/mrm.30150. Epub 2024 Jun 14.
8
Subject-specific timing adaption in time-encoded arterial spin labeling imaging.
MAGMA. 2024 Feb;37(1):53-68. doi: 10.1007/s10334-023-01121-y. Epub 2023 Sep 28.

本文引用的文献

1
A hardware and software system for MRI applications requiring external device data.
Magn Reson Med. 2022 Sep;88(3):1406-1418. doi: 10.1002/mrm.29280. Epub 2022 May 4.
2
Tracking of rigid head motion during MRI using an EEG system.
Magn Reson Med. 2022 Aug;88(2):986-1001. doi: 10.1002/mrm.29251. Epub 2022 Apr 25.
3
Comparison of cardiac volumetry using real-time MRI during free-breathing with standard cine MRI during breath-hold in children.
Pediatr Radiol. 2022 Jul;52(8):1462-1475. doi: 10.1007/s00247-022-05327-5. Epub 2022 Mar 30.
4
Integration of an RF coil and commercial field camera for ultrahigh-field MRI.
Magn Reson Med. 2022 May;87(5):2551-2565. doi: 10.1002/mrm.29130. Epub 2021 Dec 21.
5
Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging.
Phys Med Biol. 2022 Jan 19;67(2). doi: 10.1088/1361-6560/ac4213.
6
Pilot tone navigation for respiratory and cardiac motion-resolved free-running 5D flow MRI.
Magn Reson Med. 2022 Feb;87(2):718-732. doi: 10.1002/mrm.29023. Epub 2021 Oct 5.
7
Ultrasound-based sensors to monitor physiological motion.
Med Phys. 2021 Jul;48(7):3614-3622. doi: 10.1002/mp.14949. Epub 2021 Jun 7.
8
Combining prospective and retrospective motion correction based on a model for fast continuous motion.
Magn Reson Med. 2021 Sep;86(3):1284-1298. doi: 10.1002/mrm.28783. Epub 2021 Apr 8.
9
Free-breathing radial imaging using a pilot-tone radiofrequency transmitter for detection of respiratory motion.
Magn Reson Med. 2021 May;85(5):2672-2685. doi: 10.1002/mrm.28616. Epub 2020 Dec 11.
10
Pilot tone-based motion correction for prospective respiratory compensated cardiac cine MRI.
Magn Reson Med. 2021 May;85(5):2403-2416. doi: 10.1002/mrm.28580. Epub 2020 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验