Department of Physics, University of the Free State, Nelson Mandela Avenue, Park West, Bloemfontein, 9301, South Africa.
School of Pathology, Haematology and Molecular Medicine, University of the Witwatersrand, and Water Research Group, North West University, Potchefstroom, 2520, South Africa.
J Mol Model. 2022 Nov 3;28(11):376. doi: 10.1007/s00894-022-05367-6.
The effects of varying nanoparticle size; polyethylene glycol (PEG) molecule length, type, and density; and functional groups for drug delivery systems are investigated computationally. A molecular dynamics (MD) study in the framework of a Monte Carlo simulated annealing scheme is done on gold nanoparticles (Au NPs) for sizes of 2.6 nm, 3.4 nm and 6.8 nm. The bonding of PEG molecules is investigated, and the binding energy (BE) is analysed as a reference to chemisorption and physisorption of the molecules. To investigate the frontier molecular orbitals and molecular electrostatic potentials, density functional theory (DFT) simulations are also performed for various PEG lengths and functional groups (FGs). The study reports on three conclusions: firstly, reducing the Au NP size leads to coordination number (CN) loss as the number of lowly coordinated atoms increases with decreasing particle size. Secondly, the stability of the Au-PEG system is independent of length beyond [Formula: see text]. And due to PEG high steric repulsion, the number of these molecules that can be physically adsorbed to the surface is limited. And thirdly, the FGs can be grouped into electron-withdrawing group (-NTA, Biotin, COOH) and electron-donating group (-NH, OH). In future work, we will study how these conclusions influence the Au drug delivery system toxicity and cellular uptake.
研究了不同纳米颗粒尺寸;聚乙二醇(PEG)分子的长度、类型和密度;以及用于药物输送系统的官能团对其的影响。在蒙特卡罗模拟退火方案的框架内,对 2.6nm、3.4nm 和 6.8nm 三种尺寸的金纳米颗粒(Au NPs)进行了分子动力学(MD)研究。研究了 PEG 分子的键合情况,并分析了结合能(BE)作为分子化学吸附和物理吸附的参考。为了研究前沿分子轨道和分子静电势,还对不同 PEG 长度和官能团(FGs)进行了密度泛函理论(DFT)模拟。该研究报告了三个结论:首先,随着粒径的减小,低配位原子的数量增加,Au NP 的配位数(CN)损失。其次,Au-PEG 体系的稳定性与长度无关,超过[Formula: see text]。由于 PEG 的高空间位阻,能够物理吸附到表面的分子数量有限。第三,FG 可以分为吸电子基团(-NTA、生物素、COOH)和供电子基团(-NH、OH)。在未来的工作中,我们将研究这些结论如何影响 Au 药物输送系统的毒性和细胞摄取。