Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
Kyiv Academic University, Kyiv, 03142, Ukraine.
Nat Commun. 2022 Nov 3;13(1):6587. doi: 10.1038/s41467-022-34235-3.
We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
我们采用交变磁场(AMF)来主动驱动磁性填充剂,并引导渗流网络的形成和自修复。依靠 AMF,我们制造出可打印的磁阻传感器,其灵敏度和优值相对于以前的报道提高了一个和两个数量级以上。这些传感器具有低噪声、高分辨率的特点,并且可以使用各种打印技术进行处理,这些技术可以应用于不同的基底。AMF 介导的自修复具有六个特点:100%性能恢复;可在多个循环中重复修复;在室温下运行;在几秒钟内修复;无需手动重新组装;对湿度不敏感。研究发现,这些优点源于 AMF 诱导的磁性微粒子的吸引力和决定论性振荡的协同作用,从而提高了填充剂接触的数量和质量。凭借这些优势,AMF 介导的传感器用于安全应用、医疗治疗和人机界面的增强现实。