Beckett Joseph G, Thrasher Carl J, Michonski Joshua, Drexler Robert M, Babu Sachin, Cox Allyson M, Windham Braeden J, Yu Zhenning, Auguste Anesia D, Shetty Abhishek, Osborn Timothy H, Lowe Robert L, Sowards Laura A, Crouse Christopher A
Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, Ohio 45469, United States.
UES, Inc., Dayton, Ohio 45432, United States.
ACS Mater Lett. 2024 Dec 3;7(1):123-132. doi: 10.1021/acsmaterialslett.4c01358. eCollection 2025 Jan 6.
Photocurable self-healing elastomers are promising candidates for producing complex soft devices that can mend damage. However, the practicality of these materials is limited by reliance on external stimuli, custom synthesis, manual realignment, and multihour healing cycles. This paper introduces a tough 3D-printable hybrid acrylate/thiol-ene elastomer (prepared with commercially available precursors) that exhibits nearly instantaneous damage repair in the absence of external stimuli. This rapid, hydrogen bond-driven self-healing enables meaningful restoration of mechanical properties, including tensile strains up to 344% post-damage. Furthermore, structured herringbone grafts are showcased as a compelling strategy to enable cohesive failure away from healed interfaces, realizing up to 18× increases in toughness from only modest increases in interfacial surface area. Prototype soft robotic devices fabricated using vat photopolymerization demonstrate self-healing within seconds under ambient conditions and without external intervention. These results demonstrate a scalable strategy to provide real-time, autonomous functionality restoration in damaged soft devices.
可光固化的自修复弹性体是制造能够修复损伤的复杂软设备的理想候选材料。然而,这些材料的实用性受到对外部刺激的依赖、定制合成、手动重新排列以及数小时修复周期的限制。本文介绍了一种坚韧的、可3D打印的丙烯酸酯/硫醇-烯杂化弹性体(由市售前体制备),该弹性体在没有外部刺激的情况下能实现几乎即时的损伤修复。这种由氢键驱动的快速自修复能够使机械性能得到有效恢复,包括损伤后拉伸应变高达344%。此外,结构化的人字形接枝被展示为一种引人注目的策略,可实现远离愈合界面的内聚破坏,仅通过适度增加界面表面积就能使韧性提高多达18倍。使用光固化3D打印制造的软机器人原型设备在环境条件下无需外部干预即可在数秒内实现自修复。这些结果展示了一种可扩展的策略,能够在受损软设备中提供实时、自主的功能恢复。